91免费永久在线地址,懂色av成人毛片网站,欧美丰满的少妇性开放,精品日产一区二区三区

首頁
產品
診所和中心
新聞/專題
直播/活動
論文/數據庫
公益/救助
學習平臺
品牌介紹
010-62566820
搜索

《結合網絡藥理學破譯派特靈通過E6/E7-pi3k/akt信號通路誘導宮頸癌細胞凋亡》

北京中醫(yī)藥大學
Paiteling induces apoptosis of cervical cancer cells by down-regulation of the E6/E7-Pi3k/Akt pathway: A network pharmacology PTL可通過抑制E6/E7-Pi3k/Akt信號通路誘導宮頸癌細胞凋亡。它可能為治療HPV感染引起的上皮瘤變提供一種有效的替代中藥策略。
【摘要】
PTL可通過抑制E6/E7-Pi3k/Akt信號通路誘導宮頸癌細胞凋亡。它可能為治療HPV感染引起的上皮瘤變提供一種有效的替代中藥策略。

Ethnopharmacological relevance

Human papillomavirus (HPV) infection is considered to be the main pathogen causing intraepithelial neoplasia. Paiteling (PTL) has been used to treat intraepithelial neoplasia caused by human papillomavirus (HPV) infection for more than 20 years in China, but its specific mechanism of action is not very clear, and further research is still needed.

Objective

This study designed a comprehensive strategy to study the pharmacological mechanism of paiteling in regulating cervical cancer cell apoptosis by integrating LC-MS/MS, network pharmacology and pharmacological experiments.

Methods

We used liquid chromatography–tandem mass spectrometry to detect the active substances in PTL and performed protein–protein interaction analysis on the intersection of the targets of these key compounds and the targets of intraepithelial neoplasia. Additionally, by using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG), the potential pathway of PTL against HPV-induced intraepithelial neoplasia was pre- dicted. Finally, we used HeLa and Ect1/E6E7 cells for experimental verification.

Results

The protein–protein interaction network predicted that AKT1, TP53, MYC, STAT3, MTOR, and MAPK were pivotal targets for PTL to inhibit epithelial neoplasia. KEGG enrichment analysis showed that the Pi3k/Akt pathway and HPV infection had scientific significance. Compared to the control group, after PTL diluent stim- ulated HeLa and Ect1/E6E7 cells for 24 h, cell viability, migration, and invasion capabilities were significantly reduced, and cell apoptosis was significantly increased, conforming to a doseeffect relationship and time-effect relationship. PCR, cellular immunohistochemistry, and western blot experiments showed that PTL reduced the expression of E6, Pi3k, E7, Akt, Bcl-xl, while increasing the expression of Bad in HeLa and Ect1/E6E7 cells.

Conclusion

PTL can induce cervical cancer cell apoptosis by inhibiting the E6/E7-Pi3k/Akt signaling pathway. It may provide an effective alternative strategy of traditional Chinese medicine for the treatment of epithelial neoplasia caused by HPV infection.


【關鍵詞 KeyWords】

Paiteling; Network?pharmacology; Intraepithelial?neoplasia; HPV?infection;

    Ethnopharmacological relevance

    Human papillomavirus (HPV) infection is considered to be the main pathogen causing intraepithelial neoplasia. Paiteling (PTL) has been used to treat intraepithelial neoplasia caused by human papillomavirus (HPV) infection for more than 20 years in China, but its specific mechanism of action is not very clear, and further research is still needed.

    Objective

    This study designed a comprehensive strategy to study the pharmacological mechanism of paiteling in regulating cervical cancer cell apoptosis by integrating LC-MS/MS, network pharmacology and pharmacological experiments.

    Methods

    We used liquid chromatography–tandem mass spectrometry to detect the active substances in PTL and performed protein–protein interaction analysis on the intersection of the targets of these key compounds and the targets of intraepithelial neoplasia. Additionally, by using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG), the potential pathway of PTL against HPV-induced intraepithelial neoplasia was pre- dicted. Finally, we used HeLa and Ect1/E6E7 cells for experimental verification.

    Results

    The protein–protein interaction network predicted that AKT1, TP53, MYC, STAT3, MTOR, and MAPK were pivotal targets for PTL to inhibit epithelial neoplasia. KEGG enrichment analysis showed that the Pi3k/Akt pathway and HPV infection had scientific significance. Compared to the control group, after PTL diluent stim- ulated HeLa and Ect1/E6E7 cells for 24 h, cell viability, migration, and invasion capabilities were significantly reduced, and cell apoptosis was significantly increased, conforming to a doseeffect relationship and time-effect relationship. PCR, cellular immunohistochemistry, and western blot experiments showed that PTL reduced the expression of E6, Pi3k, E7, Akt, Bcl-xl, while increasing the expression of Bad in HeLa and Ect1/E6E7 cells.

    Conclusion

    PTL can induce cervical cancer cell apoptosis by inhibiting the E6/E7-Pi3k/Akt signaling pathway. It may provide an effective alternative strategy of traditional Chinese medicine for the treatment of epithelial neoplasia caused by HPV infection.

    1.?Introduction

    HPV is the smallest, non-enveloped double-stranded DNA virus found to date, and belongs to the Papillomavirus family (Zhao and Chen, 2011). Currently, more than 180 HPV subtypes have been discovered. Intraepithelial neoplasia (IN) often occurs after HPV infection. It is well known that high-risk sexually transmitted HPV is the main factor for male penile IN and anal IN, while women are prone to vulvar IN and cervical IN after HPV infection. Studies have shown that the proportion of cancers caused by HPV, especially squamous cell carcinoma, is as high as 5% (Schiller and Lowy, 2012).

    HPV16 and HPV18 are the two most common types of HPV, accounting for ~70% of all HPV-related cervical cancers (Yu et al., 2022). Schiffman (2015) found that women ( ≥30 years of age) who were negative for intraepithelial lesions cytology were at a higher risk for CIN3 or a higher pathology if they were HPV 16 (10.3%)- or HPV 18 (5.0%)-positive, compared with those positive for any HPV type other than HPV 16/18 (2.3%). A meta-analysis showed that the overall infection rate of high-risk HPVs among females in mainland China was 19.0%, and HPV 16, 52, 58, 53, and 18 were the top five subtypes with the highest infection rates (Li et al., 2019). The HeLa cell line is a human cervical cancer cell line positive for HPV18, and the growth of HPV-positive cancer cells depends on the continued expression of viral E6 and E7 oncogenes (Hoppe-Seyler et al., 2018).

    Early vaccination of uninfected people is the most effective way to reduce the burden of HPV-induced squamous cell carcinoma and related mortality, but this prevention strategy is limited to those who have not yet been exposed to HPV (Fontham et al., 2020). In addition, conventional treatments for cervical cancer, such as cisplatin, paclitaxel, and topotecan, are expensive (Subramanian et al., 2010). The drug resistance and metastasis of tumors also make them difficult to treat. The development of new drugs requires a significant amount of money and time, and surgical treatment has its limitations (Liu et al., 2016).

    Alternative medicine has become an effective means to treat or cure diseases, and traditional Chinese medicine (TCM) has been widely recognized in the clinical prevention and treatment of tumors (Yin et al.,2013). The research and development application of paiteling (PTL) was approved by the Ministry of Health of the People’s Republic of China as early as 1996, and after years of hard work by the Chinese Academy of Sciences (Beijing, China), PTL was finally successfully developed. PTL is a compound prescription composed of a variety of TCM ingredients, including Sophorae Flavescentis Radix (SFR, Kushen, Sophora flavescens AIT.), Cnidii Fructus (CF, Shechuangzi, Cnidium monnieri (L.) Cuss.), Lonicerae Japonicae Flos (LJF, Jinyinhua, Lonicera japonica Thunb.), Isatidis Folium (IF, Daqingye, Isatis indigotica Fort.), Hedyotis Diffusae Herba(HDH, Baihuasheshecao, Hedyotis diffusa Willd.), and Bruceae Fructus(BF, Yadanzi, Brucea javanica (L.) Merr.). It has outstanding performance in medical applications, showing anti-viral, detoxification,analgesic, and swelling-reduction capabilities, and is mainly used to prevent and treat IN caused by HPV infection (Wang et al., 2021; Shu

    et al., 2020). PTL is an important promotion project of the State Administration of Traditional Chinese Medicine [(Beijing) Wei Xiaozheng Zi (2011) No. 0220]. The operation method of PTL treatment is simple and has been found to have few side effects and a high clinical cure rate. The recurrence rate after PTL treatment has also been found to be significantly lower than that of surgery (Hu et al., 2019). However, the effect of PTL on tumor cells caused by high-risk HPV infection has not yet been experimentally studied. In particular, the molecular mechanism of how PTL interferes with IN is still largely unknown.

    Network pharmacology allows us to clarify the multi-target thera peutic effects of Chinese medicine based on the perspective of systems medicine (Jansen et al., 2021). Integrating the relevant targets of TCM compounds and disease networks will help us explore the mechanism of PTL prevention and treatment of HPV infection. We combined liquid chromatography-tandem mass spectrometry and network pharmacology to find the biologically active compounds and targets of PTL, then predicted the potential mechanism of PTL in the prevention and treatment of HPV-mediated IN. Further in vitro cell experiments were conducted to verify whether PTL could inhibit cancer cell proliferation by affecting these targets. Our research provides experimental evidence to prove that PTL has the property of suppressing tumors induced by high-risk HPV infection.

    2. Materials and methods


    2.1. Reagents

    The following products were purchased: 0.25% trypsin ethylenediaminetetraacetic acid (CellGro, Lincoln, NE), radio- immunoprecipitation assay tissue cell lysate (Beijing BioDee Biotechnology Co., Ltd., Beijing, China), Matrigel(Solarbio, Beijing, China), crystal violet (Amresco), hematoxylin (Solarbio), a cell counting kit (Beijing BioDee Biotechnology Co., Ltd.), anti-mouse/-rabbit universal immunohistochemical detection kit (Proteintech, Rosemont, IL), enhanced chemiluminescence super sensitive luminescent liquid (Absin), bicinchoninic acid protein quantification kit (Beijing Pulilai Gene Technology Co., Ltd., Beijing, China), goat anti-rabbit immunoglobulin G H&L (horseradish peroxidase(ab6721; Abcam, Cambridge, England), horseradish peroxidase*goat anti-mouse immunoglobulin G (H L) (RS0001-100 μl; Immunoway, Plano, TX), β-actin (13E5) rabbit monoclonal antibody (4970S; CST, Danvers, MA), rabbit monoclonal PI3-kinase p85 alpha antibody (NBP2-67488; Novus Biologicals, Lit- tleton, CO), rabbit monoclonal Akt (pan) (C67E7) antibody (4691S; CST), phospho-Akt (Ser473) (D9E) XP? rabbit monoclonal antibody (4060S;CST),mouse monoclonal HPV18 E7 (8E2) antibody (ab100953;Abcam), mouse monoclonal HPV18 HPV16 E6 (C1P5) antibody (ab70; Abcam), rabbit monoclonal bad antibody (ab62465; Abcam), anti-Bad (phospho S136) antibody (ab28824; Abcam),rabbit mono- clonal Bcl-xl (54H6) antibody (2764; CST), cisplatin (DDP) (Shanghai yuanye Bio-Technology Co., Ltd, Shanghai, China), and LY294002 in- hibitor (AbMole, Houston, TX), One-step TUNEL Apoptosis Detection Kit(Beyotime Co., Ltd., Shanghai, China).

    2.2.?Experimental?drugs

    PTL(Lot Number: 20200318) was purchased from Beijing Patborn Biotechnology Development Co., Ltd. (Beijing, China), and its main ingredients include SFR, CF, LJF, IF, HDH, and BF. During PTL liquid preparation, after centrifuging the PTL stock solution at 12,000×g for 15 min, we filtered and sterilized it with a 0.22-μm filter, stored the filtrate at 4 ?C, and diluted it with DMEM to the required concentration during the experiment. The stimulating dose of DDP to cells was 10 μg/ml.

    2.3. LC-MS/MS?conditions

    The PTL was mixed and centrifuged at 4 ?C for 15 min. The cen- trifugal force was 13,800×g and the centrifugal radius was 8.6 cm. We took 300 μl of the supernatant into an Eppendorf tube, added 1000 μl of extract (methanol: water, 4:1), vortexed to mix it, and then sonicated it in an ice-water bath for 10 min before centrifuging to obtain the su- pernatant. Then, we filtered it and used it for injection. The injection volume was 5 μl. We used the Agilent Ultra Performance Liquid Chro- matography 1290 system for LC-MS/MS analysis (Agilent Technologies, Santa Clara, CA, USA). The Waters UPLC BEH C18 column (1.7 μm 2.1*100 mm) had a column temperature of 55 ?C and a flow rate of 0.5 ml/min. Both 0.1% formic acid aqueous solution (A) and a 0.1% formic acid acetonitrile solution (B) constituted the mobile phase. The obtained supernatant was further processed: 85%–25% A, zero to 10 min; 25%– 2% A, 11–12 min; 2% A, 12–14 min, 2%–85% A, 14–14.1 min; 85% A,14.1–15 min; and 85% A, 15–16 min. Q Exactive Focus combined with the Xcalibur software (version 4.1.31, Thermo, Waltham, MA, USA) was used to collect MS data and MS/MS data. The capillary temperature in the stomach was 400 ?C, and the sheath gas flow rate and the auxiliary gas flow rate were 45 and 15 Arb, respectively. The full millisecond resolution was set to 70,000, and the spray voltage was set to 4.0 kV.

    2.4.?Predicting?the?targets?of?PTL?through?network?pharmacology


    2.4.1.?Potential?target?intersection?of?PTL?with?disease

    The targets of potential active ingredients within PTL were obtained from the YaTCM database (http://cadd.pharmacy.nankai.edu.cn/ya tcm/home) (Chong et al., 2018), TCMSP database (https://tcmsp-e. com/) (Ru et al., 2014) and ChEMBL database (https://www.ebi.ac. uk/chembl/) (Mendez et al., 2019). The ADME details of active key compounds in PTL were obtained from the Swiss ADME database (http://www.swissadme.ch/index.php).

    Genes related to IN (condyloma acuminatum and cervical cancer) were obtained from the TTD database (http://db.idrblab.net/ttd/) (Wang et al., 2020), GeneCards database (https://www. genecards.org/) (Safran et al., 2010), DisGenet database (http://www.disgenet.org/) (Su et al., 2019), DrugBank database (https://go.drugbank.com/) (Wishart et al., 2018), and OMIM database (https://omim.org/) (Hamosh et al.,2005). Both Gene Cards and Disgenet were filtered with a relevance score >average of all targets retrieved as a threshold. The targets retrieved  by  TTD  were  all  validated  by  “Clinical  trial.” Moreover,  the targets retrieved by OMIM and DrugBank were all included. Then, we imported the intersection of drug and disease targets into the STRING database (https://cn.string-db.org/) (Szklarczyk et al., 2019) to construct a target protein–protein interaction (PPI). We set the param- eters of topology analysis in the “Basic Settings” of the string database, set the confidence score≥0.4, and the maximum number of interactors=0. Then, we used Cytoscape software (version 3.8.0, https://cytos cape.org/) to visualize the PPI network.

    2.4.2.?Pathway?and?functional?enrichment?analysis

    We put the potential common intersection therapeutic target of IN and PTL into the Gene Ontology (GO) database, then analyzed its bio- logical process, cell composition, and molecular function (http://www. geneontology.org/) (Huang et al., 2009). Meanwhile, the Kyoto Ency- clopedia of Genes and Genomes (KEGG) database was used to analyze the key signaling pathways of PTL treatment of IN (www.kegg. jp/kegg/pathway.html) (Kanehisa et al., 2016).

    2.5.?Experimental?validation


    2.5.1.?Cell?line?and?culture

    HeLa cells were obtained from the Beijing Union Cell Resource Center (CBP60232, Beijing, China). Ect1/E6E7 cells were obtained from ATCC (CRL-2614, Rockefeller, MD, USA). In the experiment, the HeLa and Ect1/E6E7 cell culture medium was DMEM high glucose (Invi- trogen, Carlsbad, CA, USA), which contains 10% fetal bovine serum (FBS; Gibco Laboratories, Gaithersburg, MD) and 1% pen- icillin–streptomycin  mixture  (Hyclone  Laboratories,  Logan,  UT, USA).

    The cells were cultured in a conventional 37 ?C, 5% CO2 incubator, the medium was changed every other day, and the cells were passaged at a ratio of 1:3 every 2–3 days.

    2.5.2.?Cell?morphology?analysis

    HeLa and Ect1/E6E7 cells in the logarithmic growth phase were seeded in a 96-well plate with a quantity of 5000 cells per well and cultured for 24 h. Then, different concentrations of PTL were added to each well. After stimulation for 24 h, the morphologies of HeLa and Ect1/E6E7 cells in each group were compared with an inverted micro- scope (TS100, Nikon, Tokyo, Japan).

    2.5.3.?Detection?of?cell?IC50?by?MTT

    We selected well-grown HeLa and Ect1/E6E7 cells in the logarithmic growth phase for experiments and seeded them in 96-well plates at 5000 cells per well (100 μl). According to the results of the preliminary experiment, the PTL stock solution was diluted to seven different con- centrations (i.e., 1/64, 1/128, 1/256, 1/512, 1/768, 1/1024, and 1/ 1280), and the corresponding drug mass concentrations were 15.625, 7.813, 3.906, 1.953, 1.302, 0.977, and 0.781 mg/ml, respectively. After 24 h of PTL stimulation, We added medium containing a final concen- tration of 0.5 mg/ml MTT (Beijing BioDee Biotechnology Co., Ltd.) toeach well and continued to culture for 3 h. Then we removed the old medium, added 200 μl of dimethylsulfoxide and shook it on a constant temperature shaker at 37°C for 10 min. Finally, we used an automatic microplate reader to detect the A value at 490 nm we took the average value of OD to calculate the growth-inhibition rate. After the PTL con- centration of each group was processed logarithmically, a scatter dia- gram was made to calculate the IC50 value of the PTL. In the follow-up test group, we designated IC50 as the highdose group, 50% of IC50 as the medium-dose group, and 33% of IC50 as the low-dose group.

    2.5.4.?Cell?viability?assay?by?CCK-8

    We collected HeLa and Ect1/E6E7 cells in the logarithmic growth phase, plated them evenly in 96 wells at a density of 5×103 cells/well, treated them with serum-free DMEM for 24 h, and then added drug- containing medium, each with six replicate wells. After stimulation for 12, 24, 36, or 48 h, we aspirated the medium, added 100 μl of DMEM and cell counting kit 8 (CCK-8) mixture (9:1), incubated the solution in an incubator at a constant temperature of 37°C for 2 h, and shook and mixed it for 5 min. Finally, we detected the OD value of each well at the 450-nm wavelength of the multifunctional microplate reader (Thermo Fisher Scientific, USA).

    2.5.5.?Cell?migration?assay

    We trypsinized adherent HeLa and Ect1/E6E7 cells and collected them into 15-ml centrifuge tubes, stained them with trypan blue, and counted and plated them into a six-well plate at a density of 1.5×105 cells/well. When the cells reached 80% of the bottom of the cell culture flask, they were treated with serum-free DMEM medium for 24 h to keep the cells in the same cell cycle (G0 phase). After scribing a straight line with a 1-ml pipette tip in a vertical 6-well plate, we added 2 ml of DMEM medium containing the corresponding stimulating drugs, then recorded the scratch images at different time points (0, 12, and 24 h) and magnified them 100 times with an inverted microscope. We used ImageJ software (U.S. National Institutes of Health, Bethesda, MD) to analyze the changes in the scratched area by soft measurement.

    2.5.6.?Cell?invasion?assay

    Before the experiment, the Matrigel was diluted to 100 mg/l with DMEM, 50 μl of gel was added to the Transwell chamber and then air- dried, and the chamber was washed several times with serum-free phosphate-buffered saline (PBS) before using. We collected the fast- growing HeLa and Ect1/E6E7 cells, planted 4×104 cells in each Transwell inner chamber, added each group of corresponding stimulating drugs, put 10% FBS medium in the outer chamber, and then placed the Transwell chamber in the incubator to cultivate for 24 h. Finally, we wiped off the remaining cells in the inner chamber, fixed the cells in methanol solution for 15 min, immersed them with 0.1% crystal violet solution for 20 min, washed and dried them with PBS, and observed cell penetration with an inverted microscope (Nikon, Tokyo, Japan) 200 times.

    2.5.7.?Tunel?staining

    The two types of tumor cells were seeded into 24-well plates. After adding drugs to stimulate each group for 24 h, they were fixed with 10% formaldehyde for 15 min, washed three times with PBS, and treated with pre-cooled  1% TritonX-100  for  10  min.  After  that,  100  μl  of  TUNEL mixture (TdT + FITC-labeled dUTP) was added to each well according to the manufacturer’s instructions, and incubated at 37°C in a humid box for 60 min in the dark. Then, the nuclei were counterstained with DAPI (1 ug/ml). Finally, fluorescent green apoptotic cells were observed with a fluorescence microscope.

    2.5.8.?Real-time?polymerase?chain?reaction?(PCR)?analysis

    After stimulating HeLa and Ect1/E6E7 cells with PTL for 24 h, TRI- ZOL reagents (Invitrogen) were added, and then the upper phase liquids containing total RNAs were separated using a 1:5 ratio of chloroform of the total system. Next, the RNA samples were precipitated with isopropanol for 5 min, washing once with 75% ethanol. An ultraviolet spectrophotometer (Beckman Coulter, Brea, CA) was used to measure the concentration and purity of each group of extracted RNAs. A ratio of OD260/OD280 between 1.8 and 2.0 indicates that the purity and con- centration of RNAs meet the experimental requirements. Agarose gel electrophoresis was used to observe the integrity of total RNAs. Then, we used a reverse transcription kit (A3500; Promega Corporation, Madison, WI) to convert total RNAs into complementary DNAs (cDNAs). The 20-μl reaction system  contains  the  following components: 1  μg  of  RNAs,  25 mM of MgCl2 (4 μl), 10 mM of dNTP (2 μl), recombinant RNasin (0.5 μl), reverse transcription 10 × buffer (2 μl), 0.5 μg/μl of oligo (dT)15 primer (1  μl),  high-concentration  AMV  reverse  transcriptase  (0.65  μL),  and nuclease-free water. Our reverse transcription reaction conditions were as follows: 42°C 15 min, 95°C 5 min, 72°C 5 min, and 4 ?C for storage.

    The specific primers described in Table 1 were used for multiplex PCR amplification and real-time PCR quantitative gene detection of cDNA. The primers were obtained from Primer Bank and synthesized by Shanghai Biological Co., Ltd. The 25-μl multiplex PCR reaction system contains  the  following  components:  2.5  μl  of  cDNA,  12.5  μl  of  Green Master Mix (M7122; Promega Corporation), 2.5 μl of upstream primer, 2.5  μl  of  downstream  primer  and  5  μl  of  nuclease-free  water.  The multiplex PCR reaction conditions were as follows: 95°C pre-incubation for 2 min, 95°C for 50 s, 60°C for 50 s, and 72°C for 60 s, for a total of 38 cycles. Then, we performed electrophoresis detection in a 2.0% agarose gel (Amresco) containing GoldView Type I nucleic acid stain (Solarbio).

    According to the Rotor Gene 6000 system (Corbett Research, Sydney, Australia), the total volume of each qPCR was 25 μl, and the components of the system were as follows: 25 μl of SYBR Green Mastermix (A106908; Roche Holdings, Basel, Switzerland), 0.5 μl of upstream primer, 0.5 μl of downstream  primers,  19  μl  of  nuclease-free  water,  and  5  μl  of  cDNA template. After 40 thermal cycles on the qPCR machine, we used the 2—ΔΔCt method to calculate the fold change.

    2.5.9.?Immunohistochemistry?experiment

    HeLa and Ect1/E6E7 cells were planted on glass coverslips at a density of 3 × 104 cells/well and were incubated in an incubator at 37°C with 5% CO2. Cells were then starved for 24 h with serum-free DMEM to keep cells in the same growth cycle, After that we added PTL diluent to stimulate cells for 24 h. Next, the cells were fixed with 10% formalde- hyde dissolved in PBS for another 20 min. The cells were permeabilized with PBS containing 0.5% TritonX-100 for 10 min, and antigen retrieval solution (Solarbio) was applied for 10 min; then, 10% goat serum was added dropwise, and the cells were kept at 37 ?C for 1 h. After antibodies were added dropwise, the glass coverslip was placed in a refrigerator at 4°C and incubated for 12 h. The antibodies we used included E6 (1:50), E7 (1:50), Pi3k (1:25), and Akt (1:50). The next day, secondary anti- bodies (1:1000) were added to glass coverslips and incubated for 30 min. The cell samples on the glass coverslips were stained with hema- toxylin for 10 s, and the cells were washed with PBS three times, dehydrated with gradient ethanol, treated with xylene for 15 min, and then fixed with neutral gum. Finally, they were observed with an optical microscope at magnification of 400 times. ImageJ software (National Institutes of Health, USA) was used to compare the relative expression of the positive staining areas of E6, E7, Pi3k, and Akt.

    2.5.10.?Western?blot?analysis

    HeLa cells and Ect1/E6E7 cells were divided into 2 experimental groups and treated with PI3KAKT inhibitor LY294002 (20 μM) and activator IGF-1 (100 ngml), respectively (Pei et al., 2020). After each group of cells was stimulated by the corresponding drug for 24 h, the total protein of cells was extracted with radioimmunoprecipitation assay lysate, and the cell protein concentration was detected with bicincho- ninic acid reagent. In the experiment, 50 μg of total protein was added to each  loading  well,  10%  sodium  dodecyl  sulphate–polyacrylamide  gel electrophoresis was used to separate the total protein, and then the total protein was transferred to the polyvinylidene fluoride membrane and blocked with milk for 2 h. The primary antibodies we added included β-actin (1:1000), E6 (1:500), E7 (1:500), Pi3k (1:1000), Akt (1:800), P-akt (1:800), P-bad (1:500), Bcl-xl (1:1000), and Bad (1:2000). After incubating overnight at 4°C, the secondary antibody was added and incubated for 30 min. The membrane was washed with 0.1% TBST for 10 min and then exposed to enhanced chemiluminescence luminescent solution, and the ImageJ software was used to detect the relative expression of the band.

    2.5.11.?Statistical?analysis

    SPSS version 23.0 (IBM Corporation, Armonk, NY) was used to perform a oneway analysis of variance on experimental data conforming to the normal distribution. The comparison between groups was carried out using the least significant difference method. The experimental data were expressed as mean   standard deviation, and P < 0.05 was used to indicate a statistical significance.

    3.?Results


    3.1. LC-MS/MS?results

    We used LC-MS/MS method to determine the chemical components in PTL, and combined with literature analysis, 36 active chemical components of PTL were identified. Among them, there were 19 flavo- noid components, 4 alkaloid components, 2 phenolic components, 2 fatty acne components, 2 anthraquinone components, and 7 other types of components(Table 2). Among these compounds, flavonoids accoun- ted for the highest proportion, 52.8%, and alkaloids accounted for 11.1%.

    3.2.?PPI?network?analysis

    Based on the absorption, distribution, metabolism, and excretion (ADME) parameter standard, after removing duplicate targets, we retrieved 538 candidate targets from drug-related databases and ob- tained 376 candidate targets from five disease-related databases. A total of 51 PTL anti-IN potential targets were used to construct the PPI network. We imported the PPI network diagram into the Cytoscape software for visualization (Fig. 1A and B). The results show that the core targets included AKT1, TP53, MYC, STAT3, MAPK1, MTOR, EGFR, SRC, and JUN. Then, we used Cytoscape software to construct a network visualization of drugs-targets-disease interactions (Fig. 2C). Based on drugs-targets-disease interaction network analysis results and a literature search, we posited that the main anti-tumor active compounds in PTL were quercetin, kaempferol, matrine, emodin, Genistein, and Acacetin. (Fig. 1D-I). The ADME details of these compounds are in Table 3.

    3.3. Analyses of enrichment of the GO and KEGG pathways

    GO analysis revealed that the biological processes related to PTL‘s effects on HPV-mediated IN included protein serine regulation, oxida tive stress response, protein autophosphorylation, response to toxic substances, and cell response to biological stimuli. The main cell components included a nuclear chromosome part, membrane area, and the receptor complex. Molecular functions included threonine kinase activity, protein heterodimerization activity, chromatin binding, DNA transcription activation activity, and ubiquitin-like protein ligase bind- ing (Fig. 2A–C). In order to find the potential pathway of PTL to HPV- mediated IN, we finally enriched the potential therapeutic targets. The related KEGG pathway could be roughly divided into cell proliferation, oxidative stress, immune response, tumor, and virus infection (Fig. 2D). The Pi3k/Akt signal pathway was the most influential pathway. After integrating literature and network pharmacological analyses, we iden- tified the Pi3k/Akt signaling pathway and HPV infection as the key points for studying PTL against HPV-mediated IN. Therefore, we hy- pothesized that the mechanism of PTL effect on HPV-mediated IN may be as follows: PTL can inhibit the key oncogenic proteins E6 and E7 and the Pi3k/Akt signaling pathway of HPV, thereby regulating the growth, proliferation, and apoptosis of epithelial cells infected by HPV.

    3.4.?Experimental?validation?in?vitro


    3.4.1.?IC50?of?PTL?to HeLa?and?Ect1/E6E7?cells

    We treated HeLa and Ect1/E6E7 cells with PTL at a concentration of 0.781–15.625 mg/ml for 24 h and used MTT to determine the optical density (OD) value of each group and calculate the inhibition rate. The results of MTT assay show that the IC50 value of PTL stimulated HeLa cells for 24 h was 2.973 mg/ml, while the IC50 value of Ect1/E6E7 cells was 3.069 mg/ml (Fig. 3A and B).

    3.4.2.?PTL?changed?the?morphology?of?HeLa?and?Ect1/E6E7?cells

    With an inverted microscope, the HeLa and Ect1/E6E7 cells in the control group appeared as flat, irregular polygons with full morphology and clear cell outlines. After 24h stimulation with cisplatin and PTL at high, medium and low doses, the number of HeLa and Ect1/E6E7 cells decreased, the cells showed pyknosis, cell connections were loose, and their arrangement was disordered (Fig. 3C).

    3.4.3.?PTL?inhibited?the?viability?of?HeLa?and?Ect1/E6E7?cells

    We used the CCK-8 reagents to detect the cell viability of the tumor after PTL treatment. These results show that PTL could significantly reduce the activity of HeLa and Ect1/E6E7 cells, and increased time and concentration led to a stronger inhibitory effect of PTL. The inhibitory effect  of  PTL  high-dose  was  equivalent  to  that  of  10  μg/ml  of  DDP (Fig. 3D and E).

    3.4.4.?PTL?inhibited?the?migration?and?invasion?of?HeLa?and?Ect1/E6E7?cells

    We used a wound-healing test to determine whether PTL can inhibit the migration of HeLa and Ect1/E6E7 cells. We found that PTL signifi- cantly reduced the migration area of HeLa and Ect1/E6E7 cells at 12 and 24  h,  and  the inhibition  was  concentration-dependent  (Fig.  4A–D).  It was assumed that PTL can also reduce the invasiveness of HeLa and Ect1/E6E7 cells. Therefore, we used the Transwell invasion test for cell invasion testing. We observed a gradual decrease in the number of HeLa and Ect1/E6E7 cells passing through the matrigel along with an increase in PTL concentration. The results of the DDP group and the PTL H-dose group are similar (Fig. 4E–G).

    3.4.5.?PTL?induced?apoptosis?of?HeLa?and?Ect1/E6E7?cells

    The results of TUNEL staining showed that Hela and Ect1/E6E7 in the control group had almost no apoptosis. Compared with the control group, the apoptotic tumor cells increased in the DDP group and PTL (H-, M-, or L-dose) group. And compared with the PTL L-dose group, then umber of apoptotic cells increased in the PTL H-dose group (Fig. 5).

    3.4.6.?PTL induced the apoptosis of tumor cells through the E6/E7-Pi3k/?Akt?pathway

    In order to further verify the molecular mechanism of PTL-induced apoptosis of HeLa and Ect1/E6E7 cells, we used PCR experiments to evaluate the relative expression of E6, E7, Pi3k, Akt, Bad, and Bcl-xl mRNAs). We found that after 24 h of PTL stimulation, the relative mRNA levels of E6, E7, Pi3k, Akt, and Bcl-xl in HeLa and Ect1/E6E7 cells were significantly downregulated. On the contrary, the relative mRNA expression levels of the apoptotic gene Bad decreased. The same result was also observed in the DDP group (Fig. 6).

    In addition, We used cellular immunohistochemistry (Fig. 7) and the western blot (Fig. 8) to detect the expression of E6, Pi3k, Akt, E7, P-akt, P-bad, Bad, and Bcl-xl proteins in tumor cells infected with HPV. We found that after 24 h of stimulation with PTL H-dose, the expression of E6, E7, Pi3k, Akt, P-akt, Bcl-xl, and P-bad proteins in tumor cells were significantly lower than those of the control group, while the expression of Bad increased significantly. The results of the PTL H-dose group are similar to those of the LY294002 group and the DDP group. In addition,the expressions of Pi3k, P-akt, E6, E7, and Bcl-xl proteins were significantly decreased in the middle-dose PTL group, but increased after the addition of the Pi3k/Akt activator IGF-1. The expression of Bad protein was significantly increased in the middle-dose group of PTL, but decreased after the addition of the akt activator IGF-1.

    4. Discussion

    HPV infection is the main pathogen causing IN. According to reports, 90% of reported cases of cervical cancer are related to HPV infection (Cohen et al., 2019). The occurrence and development of HPV-induced epithelial neoplasia and cancer is a complex and continuous multi-factor process, and will remain important hidden dangers to human health for a long time (Siegel et al., 2020). Therefore, early prevention and treat- ment of HPV infection and squamous epithelial carcinogenesis are of great significance (Wang et al., 2019).

    Although the HPV vaccine industry continues to develop, the HPV vaccination rate is generally low in China, the nine-valent HPV vaccine premium is serious, and under the existing conditions, HPV vaccine is still  a  relatively  expensive  “l(fā)uxury”.  In  addition,  in  the  work  of  HPV vaccination, it will be limited by many practical problems, such as the age limit of the individual to be vaccinated, and the lack of knowledge about HPV and vaccines among adolescent girls and parents (Hu et al., 2021). Therefore, the development of alternative therapies for HPV-related IN is still very necessary. Conventional therapies such as surgery, laser, and liquid nitrogen cryotherapy are subject to many factors, while alternative drugs have the characteristics of fewer side effects and lower costs, especially TCM, which is a treasure house for the development of new drugs (Wang et al., 2013). Although more than 20 years of clinical experiments have fully demonstrated the unique ad- vantages of PTL in the treatment of genital warts and cervical neoplasia, the specific molecular mechanism has not been fully elucidated.

    In this study,we first used the LC-MS/MS method to detect the main non-volatile components in PTL. The chemical properties of the com- ponents combined with drugs–targets–disease interaction network analysis results and a literature search revealed that PTL’s main active components are quercetin, kaempferol, matrine, emodin, Genistein, and Acacetin. Some of these components have obvious therapeutic effects on HPV-infection-related IN. Especially, the study found that kaempferol increased apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways (Kashafi et al., 2017). Quercetin has antioxi- dant properties, and oral quercetin can reduce the genotoxic effects of carcinogens and inhibit the development of cervical cancer (De et al., 2000). Quercetin can affect the cell cycle of keratinocytes transformed by HPV16 E6/E7, making them stagnate in the G1 phase, stopping malignant proliferation (Beniston and Campo, 2003). In addition, quercetin can inhibit the G2/M phase of epithelioma cells, cause the release of a large amount of cytochrome-c, induce the accumulation of reactive oxygen species in cells, and cause apoptosis (Bishayee et al., 2013). Matrine and its derivatives have a wide range of biological properties, such as antiviral, anticancer, anti-inflammatory, analgesic, antimicrobial, and insecticidal activity (Huang and Xu, 2016). Emodin can hinder the activation of Akt to P-Akt in cervical squamous cell carcinoma. Large doses of emodin induce programmed apoptosis and damaging necrosis of squamous cell carcinoma (Moreira et al., 2018). Genistein can up-regulate the expression of Bax and induce apoptosis in cervical cancer cells (Kim et al., 2009). Acacetin is a potent natural antitumor agent that induces apoptosis in HNSCC cells via M3R-related calcium signaling and caspase 3 activation (Sun et al., 2019).

    The drugs–targets–disease network analysis showed that AKT1 was the core hub of PTL in the treatment of HPV-infection-related diseases. GO and KEGG predicted that PTL’s resistance to HPV-infection-related diseases is closely related to Pi3k/Akt signaling pathway. Further- more, previous study has confirmed that E6 and E7 are key oncogenes of HPV. These results indicate that E6, E7, Pi3k and Akt may be the key targets of PTL in the treatment of diseases caused by HPV infection.

    In previous research, the core process of the development of IN induced by HPV infection has been shown to be driven by oncogene E6 and E7 proteins. E6 and E7 lead to changes in the expression of multiple genes (~4% of gene expression) (Nees et al., 2001). E6 and E7 induce massive expression of genes related to cancer markers at the transcrip- tional level to mediate cell transformation, especially signal pathways related to cell cycle and cell proliferation (Bossler et al., 2019). The E7 protein in HPV can inhibit pRb in cancer cells, leading to uncontrolled cell proliferation (Menges et al., 2006). The PDZ binding domain in the HPV E6 oncoprotein is the core that mediates the transformation of cancer cells. E6 targets the Pi3k/Akt signaling pathway through the PDZ domain to mediate the transformation of normal appreciating cells into immortalized cancer cells (Accardi et al., 2011; Contreras-Paredes et al., 2009). After E6 and E7 enter a cell, they can drive the target cell into an S phase and induce cell immortalization. Studies have shown that the Pi3k/Akt signaling cascade plays a key role in mediating high-risk HPV-induced host cell survival and proliferation (Keysar et al., 2013). The heterodimer Pi3k contains two subunits, p85 and p110. The acti- vation of Pi3k can regulate different signals, promote cell survival and proliferation of various cell types, and prevent cell apoptosis, especially of related tumor cells induced by HPV (Lee et al., 2006). The protein kinase Akt has serine/threonine properties and is a key regulator in biological processes such as cell proliferation and apoptosis. The phosphorylation level of Akt is significantly upregulated in HPV-induced anal squamous cell carcinoma (Patel et al., 2007). Activated Akt can promote the expression of downstream Bcl-xl and inhibit the activity and expression of Bad, thereby inhibiting the occurrence of cell apoptosis (Pim et al., 2005; Negoro et al., 2001). Therefore, PTL may inhibit the activation of Pi3k/Akt by inactivating E6 and E7 proteins, thereby inducing the apoptosis of squamous cancer cells (Fig. 9).

    To further verify this hypothesis, we designed an in vitro pharma- cological experiment using PTL on HeLa and Ect1/E6E7 cells. We found that PTL reduced the viability of tumor cells associated with HPV infection in a concentration-dependent manner. After 24 h of PTL stimulation, tumor cells showed nuclear deformation and nuclear frag- mentation. DDP is a common anti-tumor drug that can interfere with DNA synthesis. For this study, we chose DDP as a positive control (Jordan and Carmo-Fonseca, 1998). The CCK-8 experimental results show that high-dose PTL could significantly inhibit the activity of HeLa and Ect1/E6E7 cells and induce cell apoptosis. A wound-healing test and Transwell test revealed that PTL stimulation could induce HeLa and Ect1/E6E7 cell migration and invasion ability decline. TUNEL staining showed that PTL could induce apoptosis in HeLa and Ect1/E6E7 cells. In view of the fact that excessive drug concentration may cause cytotox- icity, in subsequent studies, we determined the high, medium, and low concentrations of PTL to stimulate tumor cells based on the IC50 value, and the stimulation time was determined to be 24 h.

    Next, we studied the relationship between the biological process of PTL-induced death of squamous cell carcinoma cells and the Pi3k/Akt signaling pathway. We added LY294002, an inhibitor of pi3k/akt signaling pathway, and IGF-1, an activator, as positive controls. Studies have shown that inhibition of Akt by LY294002 can reduce the expression  of  HPV  oncogene  E7  in  host  cells  (Mun?oz  et  al.,  2018). Subsequently, we used immunohistochemistry and western blot exper- iments to observe the expression of related core target proteins. The results confirm our hypothesis because under the stimulation of PTL, the expression of E6, Pi3k, E7, Akt, P-akt, P-bad, and Bcl-xl proteins in HeLa and Ect1/E6E7 was significantly downregulated, while the expression of the apoptotic protein Bad was significantly increased. Similarly, PCR experiments found that, after 24 h of PTL stimulation, the expression of E6, E7, Pi3k, Akt, and Bcl-xl mRNAs in HeLa and Ect1/E6E7 cells was significantly downregulated, while the expression of Bad mRNA was significantly increased.

    PTL-induced death of squamous cell carcinoma cells and the Pi3k/Akt signaling pathway. We added LY294002, an inhibitor of pi3k/akt signaling pathway, and IGF-1, an activator, as positive controls. Studies have shown that inhibition of Akt by LY294002 can reduce the expression  of  HPV  oncogene  E7  in  host  cells  (Mun?oz  et  al.,  2018). Subsequently, we used immunohistochemistry and western blot exper- iments to observe the expression of related core target proteins. The results confirm our hypothesis because under the stimulation of PTL, the expression of E6, Pi3k, E7, Akt, P-akt, P-bad, and Bcl-xl proteins in HeLa and Ect1/E6E7 was significantly downregulated, while the expression of the apoptotic protein Bad was significantly increased. Similarly, PCR experiments found that, after 24 h of PTL stimulation, the expression of E6, E7, Pi3k, Akt, and Bcl-xl mRNAs in HeLa and Ect1/E6E7 cells was significantly downregulated, while the expression of Bad mRNA was significantly increased.

    In addition, a clinical study including 198 cases of cervical biopsy with pathological diagnosis of CIN III (Huang et al., 2018) and another meta-analysis (Liu et al., 2021) showed that the negative rate of HPV E6/E7 mRNA was 75.0% in the 12th month after PTL treatment. These studiesfindings support our own. However, the molecular mechanism of the multi-target molecular mechanism of PTL and the identification of the core monomer compounds of PTL still need to be further explored and discussed. In summary, our research findings indicate that PTL may constitute an effective treatment strategy for HPV infection-related IN.

    5.?Conclusions

    PTL has antitumor properties and can inhibit IN caused by HPV infection, inhibit tumor cell migration and invasion, and induce tumor cell apoptosis. PTL can inhibit and inactivate the activation of oncogenic E6 and E7 oncoproteins in host cells, thereby blocking the activation of the Pi3k/Akt signaling pathway. Our findings suggest that PTL can be used as an traditional Chinese medicine prevention strategy in the treatment of HPV-mediated IN.

    References

    Accardi, R., Rubino, R., Scalise, M., Gheit, T., Shahzad, N., Thomas, M., Banks, L.,Indiveri, C., Sylla, B.S., Cardone, R.A., Reshkin, S.J.,Tommasino, M., 2011. E6 and E7 from human papillomavirus type 16 cooperate to target the PDZ protein Na/H exchange regulatory factor 1. J. Virol. 85 (16), 8208-8216.

    Beniston, R.G., Campo, M.S., 2003. Quercetin elevates p27(Kip1) and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1. Oncogene 22 (35), 5504-5514.

    Bishayee, K., Ghosh, S., Mukherjee, A., Sadhukhan, R., Mondal, J., Khuda-Bukhsh, A.R.,2013. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction. Cell Prolif 46 (2), 153-163.

    Bossler, F., Hoppe-Seyler, K., Hoppe-Seyler, F., 2019. PI3K/AKT/mTOR signaling regulates the virus/host cell crosstalk in HPV-positive cervical cancer cells. Int. J. Mol. Sci. 20 (9), 2188.

    Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D.S., Xia, J., 2018. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46 (W1), W486-W494.

    Cohen, P.A., Jhingran, A., Oaknin, A., Denny, L., 2019. Cervical cancer. Lancet 393 (10167), 169-182.

    Contreras-Paredes, A., De la Cruz-Hernández, E., Martínez-Ramírez, I., Due?as González, A., Lizano, M., 2009. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (Akt / PI3K) signaling pathway. Virology 383 (1), 78-85. De, S., Chakraborty, J., Chakraborty, R.N., Das, S., 2000. Chemopreventive activity of quercetin during carcinogenesis in cervix uteri in mice. Phytother Res. 14 (5), 347-351.

    Fontham, E., Wolf, A., Church, T.R., Etzioni, R., Flowers, C.R., Herzig, A., Guerra, C.E., Oeffinger, K.C., Shih, Y.T., Walter, L.C., Kim, J.J., Andrews, K.S., DeSantis, C.E., Fedewa, S.A., Manassaram-Baptiste, D., Saslow, D., Wender, R.C., Smith, R.A., 2020. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J. Clin. 70 (5), 321-346.

    Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A., 2005. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33 (Database issue), D514-D517.

    Hoppe-Seyler, K., Bossler, F., Braun, J.A., Herrmann, A.L., Hoppe-Seyler, F., 2018. The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 26 (2), 158-168.

    Hu, Y., Lu, Y., Qi, X., Chen, X., Liu, K., Zhou, X., Yang, Y., Mao, Z., Wu, Z., Hu, Y., 2019. Clinical efficacy of paiteling in the treatment of condyloma acuminatum infected with different subtypes of HPV. Dermatol. Ther. 32 (5), e13065.

    Hu, S., Xu, X., Zhang, Y., Liu, Y., Yang, C., Wang, Y., Wang, Y., Yu, Y., Hong, Y., Zhang, X., Bian, R., Cao, X., Xu, L., Zhao, F., 2021. A nationwide post-marketing survey of knowledge, attitude and practice toward human papillomavirus vaccine in general population: implications for vaccine roll-out in mainland China. Vaccine 39 (1), 35-44.

    Huang, J., Xu, H., 2016. Matrine: bioactivities and structural modifications. Curr. Top. Med. Chem. 16 (28), 3365-3378.

    Huang, d., Sherman, B.T., Lempicki, R.A., 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 (1), 44-57.

    Huang, L.X., Guo, M., Dong, X.X., Yang, A.W., Zheng, J.Q., 2018. Effectof Paiteling cervical administration on HPV E6/E7 mRNA expression. Chinese modern doctor 56 (25), 74-8 (in chinese).

    Jansen, C., Baker, J.D., Kodaira, E., Ang, L., Bacani, A.J., Aldan, J.T., Shimoda, L., Salameh, M., Small-Howard, A.L., Stokes, A.J., Turner, H., Adra, C.N., 2021.

    Medicine in motion: opportunities, challenges and data analytics-based solutions for traditional medicine integration into western medical practice. J. Ethnopharmacol. 267, 113477.

    Jordan, P., Carmo-Fonseca, M., 1998. Cisplatin inhibits synthesis of ribosomal RNA in vivo. Nucleic Acids Res. 26 (12), 2831-2836.

    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44 (D1), D457-D462.

    Kashafi, E., Moradzadeh, M., Mohamadkhani, A., Erfanian, S., 2017. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother. 89, 573-577.

    Keysar, S.B., Astling, D.P., Anderson, R.T., Vogler, B.W., Bowles, D.W., Morton, J.J., Paylor, J.J., Glogowska, M.J., Le, P.N., Eagles-Soukup, J.R., Kako, S.L., Takimoto, S. M., Sehrt, D.B., Umpierrez, A., Pittman, M.A., Macfadden, S.M., Helber, R.M., Peterson, S., Hausman, D.F., Said, S., et al., 2013. A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol. Oncol. 7 (4), 776-790. https://doi.org/10.1016/j.molonc.2013.03.004.

    Kim, S.H., Kim, S.H., Lee, S.C., Song, Y.S., 2009. Involvement of both extrinsic and intrinsic apoptotic pathways in apoptosis induced by genistein in human cervical cancer cells. Ann. N. Y. Acad. Sci. 1171, 196-201.

    Lee, C.M., Fuhrman, C.B., Planelles, V., Peltier, M.R., Gaffney, D.K., Soisson, A.P., Dodson, M.K., Tolley, H.D., Green, C.L., Zempolich, K.A., 2006. Phosphatidylinositol 3-kinase inhibition by LY294002 radiosensitizes human cervical cancer cell lines. Clin. Cancer Res. 12 (1), 250-256.

    Li, K., Li, Q., Song, L., Wang, D., Yin, R., 2019. The distribution and prevalence of human papillomavirus in women in mainland China. Cancer 125 (7), 1030-1037.

    Liu, H., Wang, H., Li, C., Zhang, T., Meng, X., Zhang, Y., Qian, H., 2016. Spheres from cervical cancer cells display stemness and cancer drug resistance. Oncol. Lett. 12 (3), 2184-2188.

    Liu, L.H., Q, W.M., Zhang, Y.X., Liu, J., 2021. Meta-analysis on effect of Paiteling on high-risk HPV infection. Chin. Tradit. Herb. Drugs 52 (22), 6928-6938 (in chinese).

    Mendez, D., Gaulton, A., Bento, A.P., Chambers, J., De Veij, M., Félix, E., Magari?os, M.P., Mosquera, J.F., Mutowo, P., Nowotka, M., Gordillo-Mara?ón, M., Hunter, F.,Junco, L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F., Bosc, N., Radoux, C.J.,Segura-Cabrera, A., Hersey, A., et al., 2019. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47 (D1), D930-D940.

    Menges, C.W., Baglia, L.A., Lapoint, R., McCance, D.J., 2006. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res. 66 (11), 5555-5559.

    Moreira, T.F., Sorbo, J.M., Souza, F.O., Fernandes, B.C., Ocampos, F., de Oliveira, D., Arcaro, C.A., Assis, R.P., Barison, A., Miguel, O.G., Baviera, A.M., Soares, C.P., Brunetti, I.L., 2018. Emodin, physcion, and crude extract of Rhamnus sphaerosperma var. pubescens induce mixed cell death, increase in oxidative stress, DNA damage, and inhibition of AKT in cervical and oral squamous carcinoma cell lines. Oxid. Med. Cell. Longev., 2390234, 2018.

    Mu?oz, J.P., Carrillo-Beltrán, D., Aedo-Aguilera, V., Calaf, G.M., Le

    ón, O., Maldonado, E., Tapia, J.C., Boccardo, E., Ozbun, M.A., Aguayo, F., 2018. Tobacco exposure enhances human papillomavirus 16 oncogene expression via EGFR/PI3K/Akt/c-Jun signaling pathway in cervical cancer cells. Front. Microbiol. 9, 3022.

    Nees, M., Geoghegan, J.M., Hyman, T., Frank, S., Miller, L., Woodworth, C.D., 2001. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J. Virol. 75 (9), 4283-4296.

    Negoro, S., Oh, H., Tone, E., Kunisada, K., Fujio, Y., Walsh, K., Kishimoto, T., Yamauchi Takihara, K., 2001. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL caspase-3 interaction. Circulation 103 (4), 555-561.

    Patel, H., Polanco-Echeverry, G., Segditsas, S., Volikos, E., McCart, A., Lai, C., Guenther, T., Zaitoun, A., Sieber, O., Ilyas, M., Northover, J., Silver, A., 2007. Activation of AKT and nuclear accumulation of wild type TP53 and MDM2 in anal squamous cell carcinoma. Int. J. Cancer 121 (12), 2668-2673.

    Pei, X.D., Yao, H.L., Shen, L.Q., Yang, Y., Lu, L., Xiao, J.S., 2020. α-Cyperone inhibits theproliferation of human cervical cancer HeLa cells via ROS-mediated PI3K/Akt/mTOR signaling pathway. Eur. J. Pharmacol. 883, 173355.

    Pim, D., Massimi, P., Dilworth, S.M., Banks, L., 2005. Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene 24 (53), 7830-7838.

    Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., Xu, X., Li, Y., Wang, Y., Yang, L., 2014. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminf. 6, 13.

    Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., Nativ, N., Bahir, I., Doniger, T., Krug, H., Sirota-Madi, A., Olender, T., Golan, Y., Stelzer, G., Harel, A., Lancet, D., 2010. GeneCards Version 3: the Human Gene Integrator. Database, Oxford), baq020, 2010.

    Schiffman, M., Boyle, S., Raine-Bennett, T., Katki, H.A., Gage, J.C., Wentzensen, N., Kornegay, J.R., Apple, R., Aldrich, C., Erlich, H.A., Tam, T., Befano, B., Burk, R.D., Castle, P.E., 2015. The role of human papillomavirus genotyping in cervical cancer screening: a large-scale evaluation of the cobas HPV test. Cancer Epidemiol. Biomarkers Prev. 24 (9), 1304-1310.

    Schiller, J.T., Lowy, D.R., 2012. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat. Rev. Microbiol. 10 (10), 681-692.

    Shu, H.L., Yu, B., Li, C.Q., 2020. Treatment of giant condyloma acuminatum with paiteling: a case report. Dermatol. Ther. 33 (6), e13936.

    Siegel, R.L., Miller, K.D., Jemal, A., 2020. Cancer statistics 2020. CA Cancer J. Clin. 70 (1), 7-30.

    Su, M., Guo, C., Liu, M., Liang, X., Yang, B., 2019. Therapeutic targets of vitamin C on liver injury and associated biological mechanisms: a study of network pharmacology. Int. Immunopharm. 66, 383-387.

    Subramanian, S., Trogdon, J., Ekwueme, D.U., Gardner, J.G., Whitmire, J.T., Rao, C., 2010. Cost of cervical cancer treatment: implications for providing coverage to low income women under the Medicaid expansion for cancer care. Wom. Health Issues 20 (6), 400-405.

    Sun, F., Li, D., Wang, C., Peng, C., Zheng, H., Wang, X., 2019. Acacetin-induced cell apoptosis in head and neck squamous cell carcinoma cells: evidence for the role of muscarinic M3 receptor. Phytother Res. 33 (5), 1551-1561.

    Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., Jensen, L.J., Mering, C.V., 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47 (D1), D607-D613.

    Wang, S.J., Zheng, C.J., Peng, C., Zhang, H., Jiang, Y.P., Han, T., Qin, L.P., 2013. Plants and cervical cancer: an overview. Expet Opin. Invest. Drugs 22 (9), 1133-1156.

    Wang, Q., Schmoeckel, E., Kost, B.P., Kuhn, C., Vattai, A., Vilsmaier, T., Mahner, S., Mayr, D., Jeschke, U., Heidegger, H.H., 2019. Higher CCL22+ cell infiltration is associated with poor prognosis in cervical cancer patients. Cancers 11 (12), 2004.

    Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., Zhang, R., Zhu, J., Ren, Y., Tan, Y., Qin, C., Li, Y., Li, X., Chen, Y., Zhu, F., 2020. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 48 (D1), D1031-D1041.

    Wang, M.F., Lin, L., Li, L.F., 2021. Efficacy and safety of giant condyloma acuminatum with monotherapy of topical traditional Chinese medicine: report of eight cases. Infect. Drug Resist. 14, 1375-1379.

    Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Wilson, M., 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46 (D1), D1074-D1082.

    Yin, S.Y., Wei, W.C., Jian, F.Y., Yang, N.S., 2013. Therapeutic applications of herbal medicines for cancer patients. Evid Based Complement Alternat. Med. 2013, 302426.

    Yu, L., Majerciak, V., Zheng, Z.M., 2022. HPV16 and HPV18 genome structure, expression, and post-transcriptional regulation. Int. J. Mol. Sci. 23 (9), 4943.

    Zhao, K.N., Chen, J., 2011. Codon usage roles in human papillomavirus. Rev. Med. Virol. 21 (6), 397-411.

    丰满农村熟女大码| 按摩A级毛片免费| 中文字幕一区二区三区5566 | 成年女人午夜特黄特色毛片免| 宝宝好涨水快流出来免费视频| a天堂官网在线看| 中文字幕视频xx片| 国产成人二区在线观看| WWW17C久久久嫩草| 中文字幕一区二区三区5566| 国产AV成人污污爽爽网站蜜臀| 最近中文字幕av在线高清| 成为国内精品小视频| 69人妻精品中文字幕| 国产成人精品a 视频| A级无遮挡全肉毛片免费看| 不卡精品在线观看 | 苍井空无码在线一区二区 | 高跟丝袜日韩av| 国产不卡一区二区免费| 97久久人妻人人搡人人玩| 99pao成人永免费视频| 91免费看久久午夜无码鲁| 草裙社区精品视频三区免费看| 99热这里只有精品8| 成人无码免费视频啊啊啊| freex性日韩阿v精品一区二区三区| av在线亚洲网站| 1024国产欧美日韩综合在线| 91视频在线播放观看| 高清国产天干天干天干不卡顿| 超碰白浆国产在线观看| 中文字幕熟女黄片| 国产成+人+综合+亚洲| 春水堂av导航 | 成人福利电影在线观看| 国产成人AV一区二区三区在线 | 91探花国产在线观看| K丅v小伙和服务生囗交| 丰满少妇啪中文字幕一区| 91在线午夜福利视| 成人无码国产一区二区| 国产99精品成人午夜在线| 福利500免费导航| 丁香色婷婷五月激情| aaa午夜一级毛片免费在线播放| 99这里只有精品视频在线观看| 丰满多毛少妇做爰视频| 成人高清在线亚洲观看| 第一福利蓝导航柠檬导航Av| av免费在线观看无需播放器| 丰满少妇啪中文字幕一区| 超清首页国产亚洲丝袜| 最新精品国产偷自在线| 91av精品一区二区三区四区| 成人a∨欧美大片| 3d动漫精品啪啪一区二区 | WW国产内射精品后入国产 | 成人性生生活性生交9| 中文字幕無碼專區不卡在線| 91久久精品视频| 调教妻弟的日日夜夜| 91视频网站在线| 91麻豆精品国产先锋影音 | 国产成人AV性色在线影院| 40分钟在线观看免费| 18SCHOOL第一次破苞摘花| 成年人免费在线视频 | 不卡在线国产精品| 中文字幕永久区无码2021| 99久久精品国产一区二区蜜芽| 被男狂揉吃奶高潮60分钟| JZZIJZZIJ日本成熟少妇| 成品人和精品人的区别在哪里| 啊啊啊视频免费字幕午夜| 丁香花视频免费播放| 苍井空不为拍av害羞 | 30分钟免费婬片A片| 97精品久久天干天天天按摩| 91久久精品国产区二区| 99久久精品熟女高潮| 成人精品中国区免费| 高清一级毛片一本到免费观看| 国产av一级二级三级最新精品 | 中文字幕永久区无码2021| 中文字幕一区婷婷在线| 国产成a人亚洲精V品无码| 最新国产剧情在线不卡| 91av精品成人网| 波多野42部无码喷潮BT种子| 中文字幕亚洲欧美精品一区二区 | 91久久香蕉国产熟女视频| 99国产精品毛片 | 啊v日本在线播放| 成年在线观看视频| 综合精品无码在线观看| MM1313亚洲精品无码久久 | 成人av免费观看免费| www.黄色视频网站| 99视频国产精品免费看| 2020最新久久久视精品爱| 宝可梦沙奈朵的乳液网站| 2025年国产精品看视频| 国产v亚洲v天堂无码 | 白嫩极品女粉嫩喷水视频的 | 99久久婷婷国产精品青草 | 超碰97caoporen国产最新地址| 99精品视频在线观看.| 成人中文字幕免费| 中文字幕一区二区三区5566 | 粉嫩METART女人下部| 啊…高潮了啊免费视频| 高清一级毛片一本到免费观看| 国产AV旡码专区亚洲AV | 动漫福利精品一区二区三区| av男人在线天堂网| 草莓app深夜释放自己| 国产吧激情不卡在线观看| 不卡婷婷在线a免费视频观看| 岛国av毛片免费在线观看| 91无码精品无码专区在线| 丁香婷婷激情五月天欧美图| 福利视频一二三在线观看| 99精品国产福利在线观看| 国产成人不卡无码免费视频| wwwav大帝在线视频| av一区中文字幕在线观看| 国产吧激情不卡在线观看| 中文字幕综合av一区二区三区| 成人久久国产劲爆| 成年美女黄网站色大片不卡| 自拍偷拍校园春色| 光棍影院午夜伦理| freex性日韩阿v精品一区二区三区| 国产成人AV无码精品嫩草免费| 97精品人妻一区二区三区视频| 被入高潮的视频在线免费观看| 国产video亚洲成人毛片| 国产成人1024精品免费 | 中文字幕一区二区三区乱码在线| 99精品热视频这里只有精品 | 国产18禁免费又黄污污黄网站| 啊啊啊国产欧美日韩在线观看| 91嫩草久久久精品影院| 97久久精品久久伊人精品| kedou在线视频国产| 中文字幕熟妇人妻在线视频 | 中文字幕尤物视频| 中文字幕亚洲一区二区三区 | 国产成人国拍亚洲精品| 91色乱码一区二区三区| 白嫩主播喷水大秀| 18禁女裸乳扒开免费视频 | 丰满熟妇人妻中文字幕免费视| 啊轻点灬大JI巴太粗太长了在线| 成人论坛视频在线| 草莓视频网站免费观看| 被滋润的少妇疯狂呻吟| 成人免费视频视频在线不卡 | 18分钟处破女好痛| 99热精品国产三级在线观看| 7777色情网黄A片免费看蜜臀| 草莓视频app成人版| 91蝌蚪91九色白浆| 岛国av在线免费观看一区二区| 2020年国产精品自拍视频 | gv无码免费无禁网站男男 | av天堂网avtt| 成人性生交大片免费看久久 | 最新国产日韩涩视频下载| 成年人看的免费视频 | 97久久超碰精品视觉盛宴vr| 99久久精品久久久久久婷婷 | 91成人福利在线观看| 国产ZZJJZZJJ视频全免费| 26uuu另类亚洲欧美日本| 超碰在线公开2021| 91久久人澡人人添人人爽人人| se01在线看片| 中文字幕在线免费播放av| 91国产自拍在线播放| a男人的天堂久久a毛片2022 | 国产成人精品高清在线电影 | 中文字幕一二区熟女avtv| 91久久夜色精品国产网站| 91白丝制服被啪到喷水在线| 公交车后车座的疯狂CGH| 国产WW久久久久久久久久 | 91久久精一区二区| 爆乳上司JULIA中文字幕| 99久久精品国产免看国产| 大陆老太交xxxxxhd在线 | 国产av熟女另类| aⅤ一本久道久久波多野结衣| 91成人福利在线观看| 成人性生生活性生交9| 吃瓜黑料视频永久地址 | 777亚洲精品乱码久久久久久| 7777色情网黄A片免费看蜜臀| 99新成人国产精品| 69p69永久网址 | 91最新亚洲精品中文字幕 | 91午夜精品福利| 7777久久亚洲中文字幕蜜桃| 91久久人澡人人添人人爽人人| 91国语精品福利自产拍 | 高潮国产色色色色视频| 斗罗玉传人物黄化免费| 痴母手机在线中文字幕。| 成 人影片 免费观看 | 成人日韩欧美一级片| 成人福利免费视频| 中文字幕在线观看免费观看| 69人妻精品久久无人专区| 白嫩少妇HDXXXX性 | 91久久精品国产成人久久| 高清偷看美女撒尿mp4| ass白俄罗斯大肥妇pics| 18禁无遮挡久久精品 | 91欧美精品午夜性色福利在线| 斗罗玉传人物黄化免费| 18禁黄色网站免费观看| 成人免费网站久久久| ww国产野鸡网一区视频| 成全在线观看免费完整| 工口全彩肉肉无遮挡全彩无码| 97在线午夜免费视影院| JD又大又粗又硬受不了| 国产 欧美 日韩 在线 | 国产阿v网站高清在线| 最近的中文字幕视频89区| 2025乱码精品公司| 最近国产中文字幕视频| 被草出奶水的视频 | av在线国产盗摄ed| 啊啊啊视频免费字幕午夜| 中文字幕一精品亚洲无线一区 | 2017年亚洲天天爽天天噜| 成人无码一区二区三 | 草莓视频成人免费网站| 国产成人a∨麻豆精品| 高清精品一区二区三区| 国产vs日韩三级高清无码| 中文字幕一区二区久久| 91色视频一区二区| 自拍偷拍亚洲欧美中文字幕| 91色老久久精品偷偷鲁无毒| 91社区福利免费体验30秒| 91传媒蜜桃香蕉在线观看| 91av精品成人网| 岛国在线免费视频| MM1313亚洲精品无码久久 | 不卡一区二区国 | 91内射丁香色综合| 啊灬啊灬啊灬快灬深视频无遮掩| aa大片成人免费网站| 办公室的秘密2中文字幕| 锕锕锕锕锕锕锕锕好痛app| a天堂官网在线看| 中文字幕永久区无码2021| 最新国产日韩涩视频下载| 最近中文字幕免费完整视频高清1| 35sao在线视频免费播放| 91亚洲国产日韩欧美在线播放| 中文字幕综合av一区二区三区| 最新国产精品无码在线| 国产99精品视频| 2024国产精品一区在线观看| aa电影无码国产 | 999久久欧美人妻一区二区 | freex性日韩阿v精品一区二区三区| 隔壁的女孩3在线观看| 国产91高清视频在线观看| 99久久中出中文字幕| 宝宝好涨水快流出来免费视频| 国产911精品一二三区不卡| 成人午夜毛片免费观看| 超碰 一区 二区 中文字幕| 波多野结衣无码人妻三区| 国产 国语对白 露脸| 国产99精品视频| av无码乱码在线观看无码 | 东京热高清无码精品| 中文字幕一区二区在线免费| 91自拍偷拍在线| av天堂手机版网| 最新中文字幕免费在线视频| 99精品国产福利在线观看| 99久久中出中文字幕| 2020年国产精品自拍视频 | 国产Chinese男男GAy视频网| 99J久久精品久久久久久| 中文字幕视频xx片| 8050午夜二级一片| 国产百合高潮视频在线观看 | 成人大片免费在线视频观看| 国产成a人片在线观看视| 99久久综合狠狠综合久久| 99视频精品免费观看| 18禁动漫美女禁处被爆桶出水| 成人在线视频一区二区三区| 粉色视频视频APP免费观看| 综合精品无码在线观看| JZZIJZZIJ日本成熟少妇| 69久久国产亚洲精品嫩草| 草莓视频app下载无限看| 成人av毛片免费在线观看| 99久久精品岛国免费黄色网| 91av视频免费在线观看| 2017年亚洲天天爽天天噜| 91九色视频免费在线观看| 最新日韩av成人一区二区| 国产边打电话边做对白在线| www日本在线视频| 99爱精品在线视频| 69p69永久网址 | 99久久精品视频女互慰女内射| 国产18成人免费视频| av中文字幕潮喷在线观看| 成人成人一区二区三区| 成人Av鲁丝片一区二区免费 | A年片在线观看免费观看大全下 | 成人午夜A片999影视 | 国产av综合精品色区| 国产av传媒中文字幕| 国产不卡一区二区免费| 最近日韩一级高清视频在线| 中文字幕在线视频制服丝袜| av播放片在线观看| 成人欧美一区二区三区影院视频| av在线免费观看免费观看| jk制服长筒袜自慰无码自慰| 不卡无码人妻一区二区三区下载| 成人一区二区AV影视在线| 99视频国产精品免费看| 成人国产精品日韩 | 作爱视频免费在线观看| 成熟交BGMBGMBGM的价格| av一区中文字幕在线观看| 8x8永久华人免费观看 | 99视频在线精品国自产拍| xax was was18a| 99无码人妻一区二区三区免费| 本道高清无码不卡在线视频播放DV| 91在线播放精品| 啊好深啊好大午夜视频麻豆| 中文字幕熟女黄片| MM131午夜福利在线观看 | 成人性生生活性生交9| 风韵犹存沙发69国产| 国产成人a福利在线观看| 18分钟处破女好痛| 被男狂揉吃奶胸60分钟视频| 91在线播放一区二区| 波多野结衣办公室在线观看| 成人国产欧美大片一区| 自拍偷拍专区一区二区| 91九色视频免费在线观看| 成人c视频免费高清在线观看| 粉色视频视频APP免费观看| 最好看的2018中文2019| JZZIJZZIJ日本成熟少妇| 中文字幕一区二区三区日韩精品视频| 草莓视频成年app| 成人午夜电影在线 | 国产不卡一区二区免费| 草莓视频黄瓜视频| 自拍偷拍亚洲熟女 | av日韩国产在线观看网址| 成人18禁深夜福利网站App免费| 被男狂揉吃奶高潮60分钟| 成人欧美网站免费| 大陆老太交xxxxxhd在线 | 成人无码免费视频啊啊啊| 18禁无遮挡久久精品 | 91精品免费国产高清在线| 草莓视频app入口| 91精品国产八戒影视| 成人午夜影院在线观看免费| 丰满的人妻hd高清日本| wwwav大帝在线视频| 最近日韩中文字幕视频在线| 国产爆乳无码一区二区麻豆| 99久久婷婷国产精品青草 | 纯爱无遮挡h肉动漫在线播放 | 大色网激情你懂的| 91福利社区免费| bt樱桃磁力搜索| 国产99视频在线观看| 丰满农村熟女大码| 成人91福利在线观看| 大陆老太交xxxxxhd在线 | 成人看片免费观看| 国产av综合精品色区| 40分钟在线观看免费| 97人妻在线视频公开| 91麻豆蜜臀国产自产在线观看| 第一福利视频500| 国产av一级二级三级最新精品 | 本站采用了午国产午夜 | 波多野结衣系列无码午夜| 成人AV片无码免费天天看 | 24小时免费更新在线视频| 99精品视频只有精品| 91传媒蜜桃香蕉在线观看| mm在线视频免费看| 成年在线观看视频| 97久久久人妻一区精品| 高清国产成人在线播放网站| 91青青青青青爽在线| 俄罗斯精品18videosex性| 成人无码免费一区二区中文| 91青青草视频免费观看| av高清在线一区二区三区| 超级大爆乳奶牛被调教出奶水| 爱情岛永久地址WWW成人| 91在线播放一区二区| 国产成人AV一区二区三区在线观看| 成人精品在线视频播放| 91大神娇喘女神疯狂在线| 波多野吉衣电梯2| 调教女高官为母狗性奴| 波多野吉衣中文字幕| 91视频亚洲一区| 岛国在线免费视频| 69人妻精品中文字幕| 国产suv精品视频一区88 | 2024国产精品一区在线观看| 99久久婷婷国产综合精品青草欧美成人 | 大色网激情你懂的| www.欧美日韩国产在线 | yellow亚洲av永久无码精| 中文字幕在线视频制服丝袜| av在线播放日韩亚洲| 播放欧美一级黄色片| 成人c视频免费高清在线观看| 国产91高清免费| 高清亚洲日韩欧美在线不卡| 粉嫩Av绯色AV蜜乳AV| 91干综合亚洲 | 91人妻成人精品一区二区| 成人国产在线视频你懂的| 成人18秘 免费av在线| 成人a观看一区二区| 中文字幕一区二区在线免费| 大陆国产特级毛在线看| 不卡精品在线观看 | 中文字幕在线视频制服丝袜| 成人a毛片免费观看网站| 中文字幕亚洲成人一区| 91精品国产观看免费| 66模成视频在线| 5a级动作片在线观看 | www 国产 日韩 亚洲| 91久久精品人妻中文字幕| 96精品伊人久久久大香线蕉| 777米奇色888狠狠俺去啦| 91精品国产91久久久青草| 91精品国产91久久久青草| 按摩A级毛片免费| 中文字幕亚洲欧美另类| 成人在线观看黄色av| 91视频在线观看下载| 最新99精品国产免费无码| 777亚洲精品乱码久久久久久| 国产91精品单男| 动漫福利精品一区二区三区| 国产v亚洲v天堂无码 | 成人在线激情视频 | 高清国产天干天干天干不卡顿 | 波多野结衣无码人妻三区| 成人97在线观看免费高清| 波多野结衣第一区| 菠萝蜜免费在线视频| 国产不卡在线观看区色婷婷| 大地资源影视中文版| av日韩国产在线观看网址| 91亚洲精品免费| 丁香久久五月婷婷社区| 91九色亚洲国产| 91色视频一区二区| 99久久婷婷国产综合精品青草欧美成人 | 中文字幕在线免费观看视频| av日韩国产在线观看网址| 岛国av中文字幕影音先锋| ass白俄罗斯大肥妇pics| 草莓视频app成人版| 第一次呻吟翘臀后爆白浆| 多人性战交疯狂派对| 成人18禁深夜福利网站App免费 | 91视频入口网址| 69堂免费视频精品| 高清国产成人在线播放网站| 中文字幕亚洲日韩精品一区无码 | 97午夜理论片影| 18禁止爆乳挤奶头gif动态图| 91视频亚洲一区| 91视频福利社区| 91久久精品国产成人久久| 超级黄色a毛片视频| 69资源在线观看| 中文字幕亚洲人妻一区二区 | 97人妻在线视频公开| 成人在线视频一区二区三区| 超级黄色a毛片视频| www日本在线视频| 99国产精品毛片 | 6080yy午夜不卡一区| 草草久久97超级碰碰碰免费| 中文字幕熟妇人妻在线视频 | wap.gzhygs.com| 波多野吉衣中文字幕| 97午夜理论片影| 91传媒蜜桃香蕉在线观看| 7788在线观看免费播放| 最近中文字幕高清字幕免费MV | 成人免费欧美国产日韩| 成年黄页网站大全免费无码 | 电影天堂在线播放| 97色婷婷成人综合在线观看| 高潮无码精品色欲av午夜福利| 91精品日韩中文字幕在线观看| JLZZJLZZJLZ亚洲日本| 草莓视频下载app视频观看| 最新一区二区不卡视频在线| 成人A区在线观看污| 91香蕉视频软件| 国产成+人+综合+亚洲| 最新在线不卡中文字幕| 国产成+人+综合+亚洲| av蜜桃成人免费在线观看| 港台三级欧美aⅴ野花喷水| 91视频污黄APP下载| 国产AV旡码专区亚洲AV | 2021国产麻豆剧果冻传媒入口| 97久久天天综合色天天综合色| 不卡精品在线观看 | av一本一道中文字幕| 成人女人免费毛片视频网站| 91精品国产91久久综合 | 中文字幕熟妇人妻在线视频| 国产91色在线视频| 99精品热视频这里只有精品 | 波多野吉衣在线电影| 91av精品一区二区三区四区| 国产av深夜福利| www.亚洲欧美日韩 | 丁香久久婷婷综合精品| 啊啊啊国产欧美日韩在线观看| 成人午夜亚洲精品无码网站| 97公开在线视频| 37p粉嫩大胆色噜噜噜| 18禁美女黄网站色大片免费看| 草莓视频下载app视频观看| 福利在线观看一区 | 91自拍偷拍在线| 啊舒服快啊啊亚洲无码视频互動交流 | 成人高清免费在线 | 不卡视频在线国产| tushy欧美激情在线观看| 成人动漫一区网站免费在线观看| 7777色情网黄A片免费看蜜臀| 777久久亚洲中文蜜桃| 打扑克又叫视频软件| 不卡国产在线观看| 成人国产毛片2022年| 2022年国产成人精品| 国产AV国片精品一区二区| 777亚洲精品乱码久久久久久| 91探花国产在线观看| 18禁无遮挡久久精品 | 69精品人妻久久久久久| 5060午夜电视网| 18禁成年av网站免费看| 俄罗斯13女女破苞视频| av天堂精品久久久久暴力| 成人亚洲色欲色www | 公车上弄得我好爽| 99任你躁精品视频| 成人在线中文字幕区| 99久久久国产精品调教| 2021年国产成年视频 | 高潮爽死抽搐白浆GIF视频| 91av国产综合| 中文字幕在线观看日本| 成人无码免费一区二区中文| 高清在线观看日本| 成年一级毛片免费网站| 成人97在线观看免费高清| 97色伦图欧美图片区| 成人看片免费观看| 18国产精品成久久久久三级| 国产video亚洲成人毛片| 99一区二区三区视频| 中文字幕一区二区三区乱码aⅴ| 99久久精品久久久久久婷婷 | 草裙社区精品视频三区免费看| 99国产成人综合久久| 91九色视频免费在线观看| 91精品国产高清在线重| 91精品国产高清在线重| 成人毛片A级毛片免费吃奶视频| av毛片对白在线| 2017年亚洲天天爽天天噜| 国产99久久精品在| Aⅴ精品无码无卡在线观看| 国产av一区二区三区香焦 | freex性日韩阿v精品一区二区三区 | 波多野结衣在线精品视频| 成人社区在线视频| 97久久精品人人做人人爽| 波多野吉衣在线电影| 91成人福利在线观看| 宝宝好涨水快流出来免费视频| 国产xxxxx在线观看视频| 不卡一区二区国 | 成人亚洲A区啊啊啊 | 中文字幕网站免费在线观看| 最新午夜不卡无码av免费| 成人福利免费视频| 不卡日韩中文字幕在线观看| 91精品日韩中文字幕在线观看| 99热这这里只有是精品| ww国产野鸡网一区视频| 国产91在线香蕉 | MD传媒免费观看在线| 成人精品一区二区尤物| 国产av网站麻豆| 都市人妻激情亚洲一区二区三区 | 不卡在线免费观看中文字幕| 隔壁的女孩3在线观看| 91无码人妻一区二区成人AⅤ | 被入高潮的视频在线免费观看| 91麻豆蜜臀国产自产在线观看| 国产va免费观看| 国产av一区久久| 字幕在线免费网站| 八戒八戒神马影院在线观看10| 99精品视频只有精品| 超大乳抖乳露双乳呻吟视频| 91直播在线观看www免费| 91福利免费体验社区| 999久久的/亚洲| 都市人妻激情亚洲一区二区三区 工口全彩肉肉无遮挡全彩无码 | 草莓免费在线观看| 俺去也理论资源站| chinese国产老熟女| 69p69永久网址 | 2017年亚洲天天爽天天噜| 91传媒理伦片在线观看| www高清无码日韩三级| 91av精品一区二区三区四区| 成人av免费观看免费| 福利姬液液酱高潮喷水白浆 | 999久久国精品免费观看网站| aaaa无码国产在线观看| 18剧情禁裸男晨勃露j毛网站| 福利视频一区二区牛牛| 草莓视频18下载| 福利视频一二三在线观看| 被迫多次高潮抽搐| A片在线免费观看 | 被草出奶水的视频 | av日韩在线免费| bt樱桃磁力搜索| 八戒八戒在线视频| 福利在线播放国产精在线| 波多野结衣办公室在线观看| 北京模特刘倩与老外| 成年a级毛片免费观看秋霞| 成在线人视频免费视频无遮挡 | 国产AV办公室丝袜秘书被操| 变态另类天堂无码| 髙清无码一级爱a视频| 草莓国产视频免费观看| 国产91精品单男| 99热这里只有精品8| 成人女人免费毛片视频网站| 91久久国产成人免费网站| 成人午夜在线黄色视频| 91成人免费福利| 最新国产·精品更多| a级视频免费观看| www.日韩欧美国产| 八戒八戒在线视频| 爱爱欧美视频一区二区三区| 91av国产高清在线| av中文字幕潮喷在线观看| 福利视频 亚洲精品 | 成 人 色综合 综合网站| av天堂国产免费| 高清视频在线免费| 不卡国产在线观看| 3d动漫精品啪啪一区二区 | 97三级小视频在线观看| 成人女人免费毛片视频网站| 成人在线观看福利视频| 电影天堂在线观看高清| 国产成人av剧情自拍网站 | 成人午夜影院在线观看免费| 7086亚洲精品无码合集| 91国内精品自线在拍白富美| 91精品国自产在线播放| 成年女人午夜特黄特色毛片免| 港台三级欧美aⅴ野花喷水| 2018日韩视频中文字幕| 成人国产av精品久久久久| 成人久久国产劲爆| gogo人体高清大胆亚洲av| 中文字幕无码无遮挡在线看| 成人一二三区视频| 国产厕所在线一区二区| 自在线观看h片国产播放免费| 管鲍之交分拣中心未满十八岁| 6677免费观看在线视频| aaaa无码国产在线观看| 7777色情网黄A片免费看蜜臀| 99热这里只有精品69 | 国产av一区二区三区四区| 91九色亚洲国产| 91人妻一区二区久久久精品免费| 波多野结衣办公室在线观看 | 91免费视频成人APP| 国产91中文字幕| 国产AV无码专区亚洲AV麻豆| MM131午夜福利在线观看 | 成人亚洲精品久久 | 91中文字幕亚洲人妻| 成人福利午夜A片| 成人无码一区二区三 | 成熟丰满熟妇AV无码区| 成人免费在线观看黄色的网站| 最新国产日韩涩视频下载| 成人av在线播放免费| 91视频入口网址| 办公室强伦片免费看| 爆乳放荡的女医生BD在线观看 | 北条麻妃一区二区三区av高清| 成年片精品69情趣99hd| 成人爽a毛片免费啪啪2023| 91精品欧美一区二区三区综| 被老外添嫩苞添高潮NP| 成年轻人网站色直接看| 91亚洲国产日韩欧美在线播放| 隔壁的女孩3在线观看| 成年美女黄网站色大片不卡| 啊v日本在线播放| 丁香久久婷婷综合精品| 中文字幕日韩精品精品一区| 成人 福利在线观看| 99国产精品久久久久久久成人| 99这里只有精品视频在线观看 | 成人精品国产亚洲| 3d肉脯团qvod| 最新中文字幕在线观看免费不卡 | 成人福利电影在线观看| 东京热毛片不卡二三区| 97在线观看高清视频| 被寝取不能出声中文字幕| 丰满少妇啪中文字幕一区| 超碰白浆国产在线观看| AV无码波多野一级毛片| 成人綜合亞洲歐美一區h| 91大神精品视频在线观看| 99pao成人永免费视频| 91精品视频网站| 中文字幕手机在线播放| 高跟丝袜日韩av| A片粗大的内捧猛烈进出动态图片| 波多野结衣在线精品视频| 国产h片量多网站| 18禁裸乳无遮挡免费网站| 91视频网站在线| 丁香色婷婷五月激情| 国产18成人免费视频| 91亚洲精品福利在线播放| www.五月天午夜视频在线看| 成人免费在线午夜| 18禁止爆乳挤奶头gif动态图| 91精品欧美一区二区在线观看| 北京富婆露脸对白在线| aⅤ一本久道久久波多野结衣| 波多野结衣在线观看3人| 成人欧美一区二区三区黑人| 18分钟处破女好痛| 最近中文字幕mv在线mv| 中文字幕日产无码一区久久久久久| 国产vs日韩三级高清无码| 成人电影一区二区| 91成人免费观看| av天堂精品久久久久暴力| 中文字幕在线免费| 99视频国产精品免费看| 成人 欧美 日韩 在线 | 97se国产综合精品一区二区| av天堂国产免费| 动漫福利精品一区二区三区| 69堂免费视频精品| 更新最快的黄色网站 | a级国产高清美女理论片| 18禁黄色成人网站| 99精品国产福利在线观看| 91av精品一区二区三区四区| 福利一区二区在线| 成人午夜毛片免费观看| WW国产内射精品后入国产 | 八戒八戒在线视频| 丰满少妇人妻HD高清果冻传媒| 超碰97caoporen国产最新地址| 隔壁的女孩3在线观看| 2020年国产精品自拍视频 | 成年女人午夜特黄特色毛片免 | 丰满爆乳在线播放| 国产不卡视频在线| 最新在线精品国产一区二区| 囯产毛片久久久久久| 岛国av毛片免费在线观看| 高清亚洲自拍日本| 18国产在线播放观看 | 成人精品无码四虎影视av| www亚洲AV无码乱码精品国产福利| 337p亚洲日本中国大胆69| 92成人午夜福利| 打扑克不盖被子床上运动软件下载 | 波多野结衣系列无码午夜| 国产91长腿美女在线观看.| 91视频这里只有| 福利视频一二三在线观看| 最刺激的国产av中文字幕| 草莓视频视频在线观看| av天堂资源一区二区| av日韩精品一区在线观看| 第一次深夜视频观看网址| 中文字幕一区婷婷久久| 成人夜晚爱做免费观看| ass白俄罗斯大肥妇pics| 中文字幕日韩精品精品一区| 成人无码免费视频啊啊啊| 99久久精品免费视频| 2020最新精品极品自拍| 高H禁伦餐桌上的肉伦NP| www.欧美日本在线观看 | 国产边打电话边做对白在线| 最近更新中文字幕一区二区| 成年视频xxxxx在线观看| 最新中文字幕免费在线视频| 国产成人精品高清在线电影 | 痴女一区二区三区在线 | 最近最好最新2018中文字幕免费| aaaa无码国产在线观看| 中文字幕日产无码一区久久久久久| YY880高清影院| 成人欧美在线视频免费观看| 综合激情中文字幕一区| AV有码中文字幕 | 丰满爆乳在线播放| 成人午夜福利大片| 大学生一级毛片高清版| 被寝取不能出声中文字幕| 国产AV国片精品JK制服| 99新成人国产精品| 自在线观看h片国产播放免费| 97久久天天综合色天天综合色| 成人精品国产亚洲| www日本在线视频| 国产18成人免费视频| 港台三级欧美aⅴ野花喷水| 成人高潮视频在线观看 | 中字幕视频在线永久在线观看免费 | 91国产自拍在线播放| 俄罗斯13女女破苞视频| 777米奇色888狠狠俺去啦| av一区三区二区| 99国产精品毛片 | 成年免费大片黄在线观看高清| 高跟丝袜日韩av| 丁香五月天综合网| 传说之下羊妈挤羊奶网站| 成品人和精品人的区别在哪里| 潮喷大喷水系列无码| 波多野吉衣中文字幕| 99欧美成人精品高清| 国产av专区亚洲| 大学生一级毛片高清版| 国产91在线香蕉 | 草莓视app下载安装| 8x8永久华人免费观看 | 惨遭蹂躏的大学校花| 成人在线免费毛片| 国产成人AV福利在线播传媒 | 成人精品在线免费观看| 成年免费A级毛片免费看无码| 边摸边吻挵进去免费视频| 福利姬白浆AV导航| 最新女主播国产精品视频| 东京热毛片不卡二三区| 成人A区在线观看污| 初尝黑人巨砲波多野结衣在线观看| 福利导航av天堂中文在线| 99视频精品全部免费| 扒开美女视频网站| 成年一级毛片免费网站| A片粗大的内捧猛烈进出动态图片| 成人社区在线视频| 港台三级欧美aⅴ野花喷水 | 公粗一晚六次挺进我密道视频| 国产av一区二区三区天| 18成人片黄网站WWW| 99亚洲综合精品 | 东京一本到熟无码磁力| 91影院在线观看网站| 波多野结衣第一区| 岛国av中文字幕影音先锋| 东京热毛片不卡二三区| 粗大黑人巨精大战中国成人| 最新中文字幕av高清| 99爱视频精品免视看| 18分钟处破女好痛| 超碰97caoporen国产最新地址| 国产AV综合A∨一区二区三区| 成人免费在线视频一区二区| 成人精品中国区免费| 国产成人a∨麻豆精品| 超级碰碰成人免费视频app | 成人国产毛片2022年| 草莓视频视频在线观看| 爆乳疯狂护士在线观看| 调教女高官为母狗性奴| av天堂国产免费| 91精品亚洲内射孕妇| 成人免费视频视频在线不卡| 99久久精品视频女互慰女内射| 成人啪精品视频免费| 波多野结衣系列无码午夜| 中文字幕人妻熟女在线| 91在线播放一区二区| 91热视频在线观看这里是精品| 91手机在线日韩| 91香蕉亚洲国产一二三区 | 大陆老太交xxxxxhd在线 | 99视频国产精品免费看| 91视频网站在线| xax was was18a| 91视频网站在线| 911吃瓜群众爆料| 7777色情网黄A片免费看蜜臀| 中文字幕一区二区三区5566| 97操射操射人人色| 99精品久久久久中文字幕| 八戒影院午夜福利| zozozo欧美人禽交| 99久热这里只有精品| 别插我B嗯啊视频免费 | 达达兔影院推理片| 福利姬液液酱喷水| 成·人免费午夜视频含羞草 | 国产v亚洲v天堂a亚洲| 成人在线视频一区二区三区 | 丰满的少妇被猛烈进入 | 丰满少妇人妻无码13p在线| 国产爱豆剧传媒在线观看| 99热这里只有精品8| 777米奇色888狠狠俺去啦| 给我免费播放片国语电影| 粗大黑人巨精大战中国成人| 成 人影片 免费观看 | 国产ⅤA免费精品高清在线观看 | 丁香日韩中文字幕| av不卡中文莫网站| 99精品免费在线| 2020无码专区人妻系列日韩| 成人精品动漫www免费看| 大地神马手机免费| 91精品无码人妻老牛影院| 草莓视频污在线观看| 北京模特刘倩与老外| JLZZJLZZJLZ亚洲日本| 成年肉动漫在线观看无码中文| 成人18秘 免费av在线| av毛片对白在线| 91自拍视频在线观看| AV无码无在线观看免费 | 大地神马手机免费| 97在线观看高清视频| 高清精品一区二区三区| 511麻豆视传媒精品av| 91久久精品宅男| 最近中文字幕av在线高清| www.日韩欧美国产| 成人片黄网站色大片免费无码| 成人久久伊人咪咪| 91内射丁香色综合| 最美情侣中文字幕视频| 成·人免费午夜视频含羞草| 最新最近中文亚洲av字幕 | 国产91中文字幕| a毛片在线播放免费| 国产91中文综合字幕日韩国产| av最新中文字幕大全免费| heyzo高清中文字幕在线| 成人免费无码大片a毛片软件| 成人精品国产亚洲| 97影视app下载| av中文字幕在线观看性| 丰满女邻居做爰B| 成人欧美一区二区三区黑人| 99国产精品久久久久久久成人| 8x8永久华人免费观看 | 波多野结衣的黄片| av日韩精品一区在线观看| www.黄色视频网站| 99在线免费视频观看 | 1024国产欧美日韩综合在线| 99精品国产高清一区二区三区| 国产成人AV一区二区三区在线观看| a级在线观看免费| 丰满多毛少妇做爰视频| 大色网激情你懂的| 5g影院5g天天爽永久免费影院| 99国产精品视频免费观看| 不卡视频在线国产| 波多野结衣中文字幕免费视频| 边摸边吻挵进去免费视频| a欧美特黄日韩大片免费观看| 超碰97人人做人人爱少妇 | 丰满的少妇被猛烈进入 | 国产爆乳在线观看| MD传媒免费观看在线| 91蝌蚪91九色白浆| av无码电影一区二区三区| 八个少妇沟厕小便漂亮各种大屁股| 丰满少妇无套内谢A片小说软件| 成人无码区免费A∨| 国产69av一区二区三区| 中字幕一区二区三区乱码 | 疯狂做受XXXX高潮吃奶 | av大片国产免费看| 被男狂揉吃奶高潮60分钟| 97国产激情视频在线| 97色精品一区二区在线观看| 苍井空三点高清线视频| 大香蕉1国产av一区二区| 丰满女人的毛片久久久久久| 48沈阳熟女高潮嗷嗷叫 | 91在线播放一区二区| 成人綜合亞洲歐美一區h| 高清成人av午夜精品性a一级毛片 成人綜合亞洲歐美一區h | 7777久久亚洲中文字幕蜜桃| 国产video亚洲成人毛片| 2020欧美视频在线观看 | 5060午夜电视网| 国产边打电话边做对白在线| 成人福利电影在线观看| 中文字幕一区二区三区5566| wwwcom毛片| 91在线播放91播放在线| 北京富婆露脸对白在线| 成人午夜大香蕉视频在线观看| 自拍区欧美激情校园另类| 2016手机看欧美日韩一本到| 丁香日韩中文字幕| 91色乱码一区二区三区| 成人精品无码四虎影视av| 成人午夜电影在线 | 中文字幕尤物视频| 91香蕉视频苹果版APP| www.天堂在线资源| 99精品国产99久久久久| 成人性色在线观看| 中文字幕日韩精品在线播放| 疯狂做受DVD播放免费| www亚洲AV无码乱码精品国产福利| 中文字幕一精品亚洲无线一区 | 达达兔影院推理片| 丰满农村熟女大码| 成人论坛视频在线| 国产不卡一区二区免费| 91内射丁香色综合| 18禁止观看免费私人影院| 91视频网站在线| 高清视频在线免费| 最近亚洲中文字幕 | 岛国在线免费视频| 99热这里只有精品69 | 97se国产综合精品一区二区| 97久久天天综合色天天综合色| 国产sp打屁股视频网站| 成熟丰满熟妇AV无码区| 啊舒服快啊啊亚洲无码视频互動交流 | 国产18成人免费视频| 中文字幕无码专区人妻出轨系列| se01在线看片| 91久久嫩草影院免费看| 99亚洲综合精品成人网色播 | gogogo高清免费观看中国| av天堂资源一区二区| 7788在线观看免费播放| 被迫多次高潮抽搐| 成人黄色三级在线| 97资源网久久婷婷人妻斩| av大片国产精品久久| 成人免费无码大片a毛片软件 | 34pao国产成视频永久免费| 高清电影在线播放| 国产AV旡码专区亚洲AV | 草莓国产视频免费观看| 99久久久国产精品免费爽爽 | 办公室员工的滋润3| 69人妻精品中文字幕| 成人欧美一区二区三区黑人| 髙清无码一级爱a视频| 草莓视频app下载无限看| 疯狂做受DVD播放免费| 97久久人妻人人搡人人玩| 中文字幕亚洲欧美精品一区二区 | 91午夜福利国产 | 丁香婷婷激情五月天欧美图| av影片在线观看免费韩国 | 高清一区二区三区中文字幕| 成人av免费观看免费| 超碰 一区 二区 中文字幕| 草莓视app下载安装| 啊啊啊不要好爽高潮了在线观看| 高清中文字幕成人AV| 成 人 免 费 黄 色 网 站 无 毒| 大白腿美女屁股啪啪网站| 91成人在线视频精品| 2019年国产一级毛片| 成年网站未满十八禁免费无码| 超碰国产91青娱在线| 成年人视频大全免费观看| 中文字幕手机在线播放| 91久久精一区二区| 成人三级视频在线观看| 国产爆乳在线观看| 91久久福利国产成人精品| 99在线免费视频观看 | 国产h片量多网站| yt740樱桃最新视频 | 高请黄亚洲一区区精品观看| 国产69精品亚洲黄片大全| 99久久精品久久久久久婷婷| 大香蕉99在线观看| md豆传媒一二三区进站口在线| 波多野42部无码喷潮BT种子| 惨遭蹂躏的大学校花| 中文字幕一区二区三区日韩精品视频 | 惨遭蹂躏的大学校花| 国产av大片久久久| JLZZJLZZJLZ亚洲日本| 岛国无码h羞羞视频| 最新国产日韩欧美综合一区视频| 福利视频 亚洲精品 | 动漫精品中文字幕无码三区| 97人妻久久精品系列A片| 都市人妻激情亚洲一区二区三区 | 80s成年女人毛片免费观看观看| av在线播放国产区| 337p人体粉嫩胞高清大图视频 | 97操射操射人人色| 都市校园一区春色 | 1024国产合集| 中文字幕系列AV网最新| 国产成人不卡视频| 91手机看片国产永久免费| 中文字幕制服诱惑久久| 大色网激情你懂的| 国产AV综合A∨一区二区三区| 成人午夜在线黄色视频 | 2025年国产精品看视频| 99这里只有精品视频在线观看| 啊啊啊国产欧美日韩在线观看| 最近更新中文字幕手机版 | 超碰97人人做人人爱少妇 | 草莓免费在线观看| 成人啪啪一区二区三区| www日韩高清毛片免费观看| av在线一区中文| 成人成人一区二区三区| 91久久嫩草影院免费看| 97成人超碰精品| av在线一区中文| 99RE热这里只有精品| 国产AV综合A∨一区二区三区| 成人依依网站亚洲综合久 | 2019不卡视频一区二区三区| 综合精品一区二区在线观看| 丰满的人妻hd高清日本| 福利在线观看一区 | 国产sp打屁股视频网站| 中文字幕一区二区在线免费| 中文字幕在线亚洲精品| 中文字幕在线观看免费观看| 99精品视频在线观看.| 成人精品在线视频播放| av无码乱码在线观看无码 | 91porn国产在线观看| 波多野吉衣电梯2| 大香伊人久久精品一区二区| 91国产自拍在线播放| 最近中文字幕亚洲 | 国产AV国片精品JK制服| 中文字幕日韩精品在线播放| 草莓视频在线观看色| 草莓视频在线观看色| 91亚洲精品免费| 中文字幕日韩精品精品一区| 成人国产av精品久久久久| 国产a级中文字幕| 超碰97人人做人人爱少妇 | 96堂国产在线观看| 18国产在线播放观看 | 啊灬啊灬啊灬快灬深用口述| 综合亚洲高清欧美| 99精品国产高清一区二区三区| 91香蕉国产线看观看猫咪| 91久久精品宅男| av日韩精品一区在线观看| 成人爽a毛片免费啪啪2023| 被男狂揉吃奶高潮60分钟| 丰满人妻少妇久久久| 91人妻人人澡人人爽人人| a毛片在线播放免费| 成年无码AV片完整版| 丰满少妇一级毛片免费| 99RE热这里只有精品| 国产18成人三级在线观看| 99J久久精品久久久久久| 宝可梦沙奈朵的乳液网站| 吃奶的中文字幕色妞网| MM1313亚洲精品无码久久 | 成人黄色视频下载| 波多野结衣中文字幕系列 | 91色乱码一区二区三区| 最新国产日韩欧美综合一区视频 | 中文字幕人妻丝袜美腿乱 | 丰满尤物贵妇颤抖潮喷| free性开放小少妇 | 拨开丁字裤揉捏H| 99久久亚洲综合网精品全集观看| 丰满爆乳在线播放| 成人片黄网站色大片免费无码| 91视频入口网址| 成人午夜在线黄色视频| 波多野洁衣家庭教师| 波多野结衣在线精品视频| 91蜜臀国产自产在线观看| 成人91福利在线观看| 最新国产精品首页在线观看| 锕锕锕锕锕锕锕锕好痛app| MM1313亚洲精品无码久久 | 2024国产精品一区在线观看| 草莓视频成年app| 国产vs日韩三级高清无码| 八重神子ちゃんが部下を腿法| 超清免费在线观看| zozozo欧美人禽交| 18禁黄色网站免费观看| 成品人和精品人的区别在哪里| 最近中文字幕亚洲 | av无码小缝喷白浆在线观看| 成全在线观看免费完整| 中文字幕在线免费播放av| 成年免费A级毛片免费看无码| 国产a级片一级毛片| 丰满女人的毛片久久久久久| 啊轻点灬大JI巴太粗太长了在线| AAA少妇高潮大片免费看088| 成年片精品69情趣99hd| 成人高清免费在线 | 宝宝好涨水快流出来免费视频 | 国产+免费+无码| 91色漫在线ios手机版安装 | 最近中文字幕av在线高清| 中文字幕在线观看日本| 国产成人a∨麻豆精品| 成人在线中文字幕区| YYY6080韩国三级理论久久| 国产av深夜福利| 不卡一区二区国 | 91人人澡人人妻人人精品| 八戒八戒在线影院| 91成人区一区二区| 电影天堂在线观看高清| 福利在线影院在线视频| 波多野洁衣高清写真 | 啊灬啊灬啊灬快灬深用口述| 91视频网站在线| 国产sp打屁股视频网站| 高清一区二区三区中文字幕| 最新日韩av成人一区二区| 91在线免费观看国产电影| 高清国产天干天干天干不卡顿| 中文字幕一区婷婷久久| 给我免费播放片国语电影| 波多野结衣在线精品视频| 成人綜合亞洲歐美一區h| 国产a级精品一区二区免费看| 18禁网站精品久久久久| a级成人毛片在线免费观看| 被主人各种玩具姿势c到爆| www高清无码日韩三级| 波多野洁衣高清写真 | 99久久国产成人精品| 18禁久久精品乱码| av毛片精品久久久| 中文字幕亚洲综合一区| 都市激情亚洲91| AV草草久久久久久久久久久| 国产91视频在线观看| 97成人超碰精品| 东京热毛片不卡二三区| 96精品伊人久久久大香线蕉| 被迫多次高潮抽搐| 成年轻人网站色直接看| 成人午夜大香蕉视频在线观看| 99热这里只有精| 99久久久国产精品免费爽爽| 成人欧美网站免费| 中文字幕在线观看国产精品| 爆乳放荡的女医生BD在线观看| 草草久久97超级碰碰碰免费| 第一次深夜视频观看网址| av在线免费观看免费观看| 中文字幕人妻熟女在线| 成人亚洲电影在线天堂| 超碰av在线互动交流| 高清自拍少妇免费 | 丁香花在线影院观看在线播放| 打扑克不盖被子床上运动软件下载| 国产成人91成人精品看片| www.日韩欧美国产| 91在线国产精品无马| 大地神马手机免费| 成人无码H动漫在线视频网站| 91深夜福利免费观看网站入口| 最近中文字幕免费完整视频高清1| 高清欧美日韩在线| 中文字幕系列AV网最新| ZZJI亚洲日本少妇JIZJⅠ | 被主人各种玩具姿势c到爆| 傲风文学网无弹窗 | 国产a线视频播放| A级无遮挡全肉毛片免费看| 中文字幕一区二区三区5566| 中文字幕网站免费在线观看| 91精品免费在线播放视频| av日韩免费在线| 爆播国产三级片在线视频| 八戒影院午夜福利| 夫の目の前侵犯新婚人妻在线| 厨房里掀起岳的裙子| 91亚洲欧美日韩国产| 91深夜福利免费观看网站入口| 丁香激情五月在线| 成人在线免费播放| 高清亚洲日韩欧美在线不卡| 91av精品成人网| 中文字幕无码av福利网| 5060午夜电视网| 成人精品中国区免费| 99精品久久久久久久婷婷 | 成人国产av精品久久久久| 成人午夜影院在线观看免费| fc2ppv视频在线观看 | 99无码人妻一区二区三区免费| 东京热毛片不卡二三区 | 工口全彩肉肉无遮挡全彩无码 | 7777色情网黄A片免费看蜜臀| 91一区二区三区四区五区| 啊…高潮了啊免费视频| 91在线国产精品无马| 丁香花在线影院观看在线播放 | 国产av传媒中文字幕| 99精品99国产不卡| 福利姬白浆AV导航| 91国内成人在线| 成人福利午夜A片| wwwcom毛片| 69人人爱人人做人人爽| 99精品久久久久中文字幕| 潮喷大喷水系列无码| 自拍偷拍亚洲熟女 | 中文字幕手机乱码一区二区| 中文字幕一区日韩精品| 成人性做爰aaa片免费视频| 高清亚洲自拍日本| 18禁动漫美女禁处被爆桶出水 | 成人无码H免费动漫在线观看| 99久久久国产精品调教| 成年轻人网站色直接看| 白嫩主播喷水大秀| 成人在线观看黄色av| 国产边打电话边做对白在线 | 成年人午夜视频免费在线观看| 成人精品动漫www免费看| 中文字幕少妇av| 91精品国产自产永久观看| jk制服长筒袜自慰无码自慰| 97久久精品人妻人人| 冲田杏梨6部合集| 播五月婷婷开心中文字幕| 97一期涩涩97片久久| 超清av在线播放不卡无码 | 91午夜精品福利| 福利在线影院在线视频| 成人免费黄色网站无毒| 91美女秘片黄在线观看| 91国偷自产一区二区三区| 疯狂做受DVD播放免费| 51vv视频免费观看视频 | 国产av第一区二区三区| 成人97在线观看免费高清| 福利姬液液酱喷水视频在线观看| 97一期涩涩97片久久| 91精品乱码久久| 69成人精品毛片在线播放| 91精选日韩在线观看| 粗大黑人巨精大战中国成人| 91香蕉视频下载污版| 99久热这里只有精品| 国产AV国片精品一区二区| 不卡无码人妻一区二区三区下载| 国产 欧美 日韩在线播放| 高潮无码精品色欲av午夜福利| 69人人爱人人做人人爽| gogo人体高清大胆亚洲av| av日韩精品一区在线观看| AV在线大片不卡可观看| 成人一二三区视频| www.久久久综合伊人| 成人精品国产亚洲| 2021最新热播日韩无码| 最激烈的床震娇喘视频出水| 被草出奶水的视频 | av网址麻豆精品免费| 1024人妻一区二区三区69| 成人av毛片免费在线观看| 99久久精品免费视频| 国产18禁免费又黄污污黄网站| 国产MV高清砖码2025| av最新中文字幕大全免费| 高潮爽死抽搐白浆GIF视频| 中文字幕伊人精品| 东京热高清无码精品| JIZZJIZZ日本高潮喷水 | 都市激情亚洲91| av无码小缝喷白浆在线观看| 91视频软件APP| aa电影无码国产 | 给我免费播放片国语电影| 2017年亚洲天天爽天天噜| 福利在线影院在线视频| 99视频在线免费| 草莓视频app下载无限看| 国产av麻豆mag剧集 | 97人妻免费起碰公开| freex性日韩阿v精品一区二区三区| 337p欧美日本超大胆艺术裸| 国产91美女视频一区二区| 成人 福利在线观看| 成年人看的免费视频 | 第一会所亚洲转贴无码| 99久久婷婷国产综合精品青草欧美成人| 成年人视频在线观看| 成全在线观看免费完整| aaaa无码国产在线观看| 最新一区二区不卡视频在线| 超级黄色a毛片视频| 啊v日本在线播放| 高清欧美日韩在线| 福利在线影院在线视频| 国产成人AV一区二区三区在线观看| freex性日韩阿v精品一区二区三区| 成人午夜毛片免费观看| 99久久精品免费观看国产欧美日韩| 91精品无码人妻老牛影院| 99久久久国产免费观看视频| www.日本免费一区二区三区| 91九色蝌蚪国产欧美亚洲| ysl蜜桃色888网站| 国产69精品亚洲黄片大全| 97久久人妻人人搡人人玩| 成人社区在线视频| 91在线午夜福利视| 2020欧美视频在线观看 | 高清热播韩剧美剧全集 | 成人福利电影在线观看| yellow亚洲av永久无码精| av大片国产免费看| 99久久婷婷国产精品青草 | 99久久成年人免费视频| 67194成在线观看免费 | 99视频在线精品国自产拍| 99久久久无码精品免费| 隔壁的女孩3在线观看| 二级毛片在线观看 | a天堂无码秋霞网| AV无码波多野一级毛片| 福利姬白浆AV导航| 最美情侣中文字幕视频| 被男狂揉吃奶高潮60分钟| 八戒八戒在线影院| v影院最新在线v视频| 厨房里掀起岳的裙子| 国产91美女视频一区二区| ww国产野鸡网一区视频| 草莓视频下载app视频观看| 97操射操射人人色| 疯狂做爰xxxⅹ高潮对白| 2019免费一级黄片| 最好看的2018中文2019| 综合激情中文字幕一区| 98热精品视频在线观看| 99久久国产露脸国语对白 | 97色伦97色伦综合图区| 国产av不卡中文字幕| 400部国产精品偷自产在线| 中文字幕手机在线播放| 初高中生洗澡自慰高清网站| a级国产高清美女理论片| 综合亚洲欧美精品日韩| 97精品久久天干天天天按摩| chinese国产老熟女| 囯产毛片久久久久久| 成人区亚洲区无码区在线| 啊啊啊视频免费字幕午夜| mm在线视频免费看| 国产成年无码V片在线| heyzo一本久久综合| 2021年国产成年视频 | 2016手机看欧美日韩一本到| 40分钟在线观看免费| 成人午夜视频免费播放| www.黄色视频网站| jlzz大全高潮多水老师 | 成年女人午夜特黄特色毛片免| 不卡在线国产精品| 99国产成人综合久久| 中文字幕有码亚洲大片视频 | WWW17C久久久嫩草| 放荡的少妇2欧美版| 91青青草视频免费观看| 97三级小视频在线观看| 104国产一级拍拍视频| 3d动漫精品啪啪一区二区 | 丰满少妇被猛烈进入无码| 91久久人澡人人添 | 18国产在线播放观看 | 工口全彩肉肉无遮挡全彩无码| av毛片对白在线| 粉嫩无码精品久久久久| 岛国av毛片免费在线观看| 成人h动漫精品一区二区无遮挡| 97影院在线观看| 99在线免费观看 | www日本在线视频| 东京热人妻系列无码专区| 东京热高清无码精品| 18禁网站精品久久久久| 懂色av一区二区三区免费 | 成人国产在线视频你懂的| 18国产精品成久久久久三级| av无码小缝喷白浆在线观看 | 第一页综合婷婷中文字幕| 91精品国产观看免费| 国产99精品视频| 91在线精品中文字幕在线| 公车上弄得我好爽| 成人毛片18女人毛片免费 | 高清在线观看中文欧美 | 99久久精品免费视频| 成人在线免费播放| 福利姬液液酱喷水| 成年人视频大全免费观看| se01在线看片| 91高清一级毛片| 99精品久久久久久久婷婷 | 国产成人精品高清在线电影 | gogogo高清免费观看中国| A级无遮挡全肉毛片免费看| 自拍偷拍专区一区二区 | 中文字幕一区二区三区不卡在线| 国产h片量多网站| 国产a线视频播放| 7788成年網站免費觀看| 99视频精品免费观看| 成年无码AV片完整版|